Machine learning application for radon release prediction from the copper ore mining in Sin Quyen, Lao Cai, North Vietnam

被引:1
作者
Bao, Tran Dinh [1 ,2 ]
Vu, Trong [3 ]
Tue, Nguyen Tai [4 ,5 ]
Quy, Tran Dang [4 ,5 ]
Thi, Thuy Huong Ngo [6 ]
Toth, Gergely [7 ]
Homoki, Zsolt [7 ]
Kovacs, Tibor [7 ]
Duong, Van-Hao [8 ]
机构
[1] Hanoi Univ Min & Geol HUMG, Hanoi, Vietnam
[2] Hanoi Univ Min & Geol, Innovat Sustainable & Responsible Min ISRM Res Grp, Hanoi, Vietnam
[3] Quang Ninh Univ Ind, Fac Mining & Construct, Dong Trieu, Quang Ninh, Vietnam
[4] Vietnam Natl Univ, Univ Sci, VNU Key Lab Geoenvironm & Climate Change Response, Hanoi, Vietnam
[5] Vietnam Natl Univ, Univ Sci, Fac Geol, Hanoi, Vietnam
[6] Phenikaa Univ, Fac Biotechnol Chem & Environm Engn, Hanoi 12116, Vietnam
[7] Univ Pannonia, Inst Radiochem & Radioecol, Veszprem, Hungary
[8] Natl Univ, VNU Sch Interdisciplinary Studies, 144 Xuan Thuy St, Hanoi 100000, Vietnam
关键词
Radon prediction; Sin Quyen; Machine learning; One-hidden-layer; ANN; URANIUM-MINE; DISPERSION; RN-222; THORON; MODEL;
D O I
10.1007/s10967-023-09281-w
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The radon release prediction from radioactive-bearing mines during mineral processing and mining is an essential target. A simple one-hidden-layer artificial neural network (ANN) model was designed with low computation cost to train, reference and get optimum effectiveness in comparison with two-hidden-layer ANN, random forest and support vector machine models which was applied for Sin Quyen copper deposit. The result showed with values of MAPE = 1.12(%), RMSE = 2.79(Bq/m3), MABE = 2.10(%), R2 = 0.990, r = 0.99, for training part; MAPE = 1.12(%), RMSE = 2.79(Bq/m3), MABE = 2.09(%), R2 = 0.995, r = 0.997 for testing part. The gamma dose and distance were significantly more effective variables for the radon prediction than direction, coordinate, and uranium concentration factors.
引用
收藏
页码:3291 / 3306
页数:16
相关论文
共 43 条
[1]  
[Anonymous], 2010, Radionuclides in the Environment
[2]   Estimation of shear strength parameters of soil using Optimized Inference Intelligence System [J].
Binh Thai Pham ;
Amiri, Mahdis ;
Manh Duc Nguyen ;
Trinh Quoc Ngo ;
Kien Trung Nguyen ;
Trung Tran, Hieu ;
Hoanng Vu ;
Bui Thi Quynh Anh ;
Hiep Van Le ;
Prakash, Indra .
VIETNAM JOURNAL OF EARTH SCIENCES, 2021, 43 (02) :189-198
[3]   Using Artificial Neural Network (ANN) for prediction of soil coefficient of consolidation [J].
Binh Thai Pham ;
Singh, Sushant K. ;
Ly, Hai-Bang .
VIETNAM JOURNAL OF EARTH SCIENCES, 2020, 42 (04) :311-319
[4]  
Carvalho F, 2006, INT C HLTH BUILD HB
[5]   Flood susceptibility modeling using Radial Basis Function Classifier and Fisher's linear discriminant function [J].
Chinh Luu ;
Duc Dam Nguyen ;
Amiri, Mandis ;
Tran Van Phong ;
Quynh Duy Bui ;
Prakash, Indra ;
Binh Thai Pham .
VIETNAM JOURNAL OF EARTH SCIENCES, 2022, 44 (01) :55-72
[6]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[7]   GIS based frequency ratio method for landslide susceptibility mapping at Da Lat City, Lam Dong province, Vietnam [J].
Dang Quang Thanh ;
Duy Huu Nguyen ;
Prakash, Indra ;
Jaafari, Abolfazl ;
Viet-Tien Nguyen ;
Tran Van Phong ;
Binh Thai Pham .
VIETNAM JOURNAL OF EARTH SCIENCES, 2020, 42 (01) :55-66
[8]   Modelling the dispersion of radon-222 from a landform covered by low uranium grade waste rock [J].
Doering, Che ;
McMaster, Scott A. ;
Johansen, Mathew P. .
JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2018, 192 :498-504
[9]   High-level natural radionuclides from the Mandena deposit, South Madagascar [J].
Duong Van Hao ;
Chau Nguyen Dinh ;
Jodlowski, Pawel ;
Kovacs, Tibor .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2019, 319 (03) :1331-1338
[10]  
ESCAP U, 1992, STAT ENV AS PAC 1990, DOI [10.1016/j.envpol.2021.118385, DOI 10.1016/J.ENVPOL.2021.118385]