Interpolation-operator orthogonal, hierarchical H1-conforming basis functions for tetrahedral finite elements

被引:1
作者
Toth, Laszlo Levente [1 ]
Schuck, Lukas David [1 ]
Dyczij-Edlinger, Romanus [1 ]
机构
[1] Saarland Univ, Chair Electromagnet Theory, Saarbrucken, Germany
来源
2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA | 2023年
关键词
finite element method; interpolation; approximation methods; ARBITRARY ORDER; SHAPE FUNCTIONS; COMPUTATION; PROJECTIONS; H(CURL); BASES;
D O I
10.1109/ICEAA57318.2023.10297826
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new H-1-conforming finite-element basis is proposed. The basis functions are hierarchical in terms of the polynomial order and feature symmetries in terms of barycentric coordinates. The corresponding element matrices exhibit high levels of sparsity and moderate condition numbers in the higher-order case. Moreover, the basis functions are pairwise orthogonal with respect to the finite-element interpolation operator, which is given in explicit form. Thus, the basis possesses not only hierarchical but also interpolatory properties. The resulting interpolation scheme is efficient because it requires the evaluation of only a single scalar product per basis function. An example is presented, where the proposed interpolation scheme is used to construct inhomogeneous Dirichlet boundary conditions. The numerical results confirm that interpolation yields the same asyptotic rate of convergence as L-2 approximation, which is much more expensive.
引用
收藏
页码:421 / 425
页数:5
相关论文
共 31 条
[1]   Hierarchic finite element bases on unstructured tetrahedral meshes [J].
Ainsworth, M ;
Coyle, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (14) :2103-2130
[2]   Bernstein-Bezier bases for tetrahedral finite elements [J].
Ainsworth, Mark ;
Fu, Guosheng .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 :178-201
[3]   BERNSTEIN-BEZIER FINITE ELEMENTS OF ARBITRARY ORDER AND OPTIMAL ASSEMBLY PROCEDURES [J].
Ainsworth, Mark ;
Andriamaro, Gaelle ;
Davydov, Oleg .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (06) :3087-3109
[4]   Local L2-bounded commuting projections in FEEC [J].
Arnold, Douglas ;
Guzman, Johnny .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (05) :2169-2184
[5]   THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SZABO, BA ;
KATZ, IN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :515-545
[6]  
Babuska I., 2021, Finite element analysis: Method, verification and validation
[7]   New shape functions for triangular p-FEM using integrated Jacobi polynomials [J].
Beuchler, S ;
Schoeberl, J .
NUMERISCHE MATHEMATIK, 2006, 103 (03) :339-366
[8]   Sparsity optimized high order finite element functions for H(curl) on tetrahedra [J].
Beuchler, Sven ;
Pillwein, Veronika ;
Zaglmayr, Sabine .
ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (05) :749-769
[9]  
Christiansen SH, 2008, MATH COMPUT, V77, P813, DOI 10.1090/S0025-5718-07-02081-9
[10]  
Coxeter Harold Scott Macdonald, 1961, Introduction to geometry, P2