Bond strength of deformed reinforcement embedded in steel fiber reinforced concrete: Influencing factors and prediction model

被引:4
|
作者
Hou, Lijun [1 ,2 ]
Sun, Hui [1 ,2 ]
Liu, Gengsheng [1 ,2 ]
Huang, Ting [1 ,2 ]
Chen, Da [1 ,2 ]
机构
[1] Hohai Univ, Minist Educ Coastal Disaster & Protect, Key Lab, Nanjing 210098, Peoples R China
[2] Hohai Univ, Coll Harbour Coastal & Offshore Engn, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
SFRC; Bond strength; Cover to rebar-diameter ratio; Fiber fraction; Bond length; Model; STRESS-SLIP RESPONSE; MECHANICAL-PROPERTIES; PULL-OUT; BARS; BEHAVIOR; CONFINEMENT; COVER; PLAIN;
D O I
10.1016/j.conbuildmat.2023.133436
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The addition of steel fiber is an effective method to improve the bond behavior between reinforcement and concrete. However, a unified bond strength model for bond strength of reinforcement in steel fiber reinforced concrete (SFRC) is not available yet. In this paper, the effect of the related factors on the bond strength is first analyzed and then a modified bond strength is proposed, based on 449 test data collected from 18 bond experimental studies. The influencing factors considered include bond test methods, cover to rebar-diameter ratio (c/d), bond length to rebar diameter ratio (l/d), fiber fraction (V-f), fiber slenderness (l(f)/d(f)) and rebar diameter (d). The results indicate that bond strength is greatly affected by c/d and l/d, while the effect of steel fiber is correlated with the composite fiber factor (V-f & sdot;l(f)/d(f)) and fiber distribution uniformity. In addition, the applicability of five SFRC bond strength models proposed previously is evaluated based on statistical characteristics. Current bond strength models have limited applicability and some models inappropriately neglect the effect of bond length. A modified bond strength model with improved goodness-of-fit and prediction accuracy is proposed which has good applicability to both pullout and beam bond tests.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Bond strength and prediction model for deformed bar embedded in hybrid fiber reinforced recycled aggregate concrete
    Gao, Danying
    Yan, Huanhuan
    Fang, Dong
    Yang, Lin
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 265
  • [2] Bond strength of deformed bar embedded in steel-polypropylene hybrid fiber reinforced concrete
    Huang, Le
    Xu, Lihua
    Chi, Yin
    Deng, Fangqian
    Zhang, Aoli
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 218 : 176 - 192
  • [3] Bond strength prediction for deformed steel rebar embedded in recycled coarse aggregate concrete
    Kim, Sun-Woo
    Yun, Hyun-Do
    Park, Wan-Shin
    Jang, Young-Il
    MATERIALS & DESIGN, 2015, 83 : 257 - 269
  • [4] Bond behavior of reinforcement embedded in steel fiber reinforced concrete under chloride attack
    Hou, Lijun
    Ye, Ziyao
    Zhou, Bingxuan
    Shen, Chun
    Aslani, Farhad
    Chen, Da
    STRUCTURAL CONCRETE, 2019, 20 (06) : 2242 - 2255
  • [5] Bond strength and reliability analysis of stainless steel rebar embedded in fiber reinforced coral aggregate concrete
    Yang, Haifeng
    Mei, Junjie
    Yang, Yanxi
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 350
  • [6] An Improved Prediction for Bond Strength of Deformed Bars in Concrete Externally Confined with Fiber-Reinforced Polymer
    Xu, Zhenwen
    Yan, Dongming
    ACI MATERIALS JOURNAL, 2023, 120 (06) : 19 - 32
  • [7] Bond strength of deformed steel bars embedded in geopolymer concrete
    Mawlood, Barzan Omar
    Mohammad, Ahmed Heidayet
    Bzeni, Dillshad Khidhir
    ADVANCES IN CONCRETE CONSTRUCTION, 2022, 14 (05) : 331 - 339
  • [8] A thermodynamics-based damage-plasticity model for bond stress-slip relationship of steel reinforcement embedded in fiber reinforced concrete
    Huang, Le
    Chi, Yin
    Xu, Lihua
    Deng, Fangqian
    ENGINEERING STRUCTURES, 2019, 180 : 762 - 778
  • [9] Bond strength of steel deformed rebars embedded in artificial lightweight aggregate concrete
    Kim, Dae-Jin
    Kim, Min Sook
    Yun, Geun Young
    Lee, Young Hak
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2013, 27 (5-6) : 490 - 507
  • [10] Effect of quality of recycled aggregates on bond strength between concrete and embedded steel reinforcement
    Assaad, Joseph J.
    Matar, Pierre
    Gergess, Antoine
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2020, 9 (02) : 94 - 111