A Note on the Jacobian Problem of Coifman, Lions, Meyer and Semmes

被引:0
作者
Lindberg, Sauli [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, Helsinki 00014, Finland
关键词
Jacobian equation; Compensated compactness; Commutators; COMPENSATED COMPACTNESS; HIGHER INTEGRABILITY; LIPSCHITZ-DOMAINS; HARDY-SPACES; COMMUTATORS; PARACOMMUTATORS; FACTORIZATION;
D O I
10.1007/s00041-023-10041-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Coifman, Lions, Meyer and Semmes asked in 1993 whether the Jacobian operator and other compensated compactness quantities map their natural domain of definition onto the real-variable Hardy space H-1(R-n). We present an axiomatic, Banach space geometric approach to the problem in the case of quadratic operators. We also make progress on the main open case, the Jacobian equation in the plane.
引用
收藏
页数:29
相关论文
共 57 条
  • [1] Astala K., 2009, ELLIPTIC PARTIAL DIF
  • [2] Hardy!Sobolev spaces on strongly Lipschitz domains of Rn
    Auscher, P
    Russ, E
    Tchamitchian, P
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 218 (01) : 54 - 109
  • [3] ENDPOINT FOR THE DIV-CURL LEMMA IN HARDY SPACES
    Bonami, Aline
    Feuto, Justin
    Grellier, Sandrine
    [J]. PUBLICACIONS MATEMATIQUES, 2010, 54 (02) : 341 - 358
  • [4] Compact Commutators of Rough Singular Integral Operators
    Chen, Jiecheng
    Hu, Guoen
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (01): : 19 - 29
  • [5] WEIGHTED ESTIMATES FOR BELTRAMI EQUATIONS
    Clop, Albert
    Cruz, Victor
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (01) : 91 - 113
  • [6] COIFMAN R, 1993, J MATH PURE APPL, V72, P247
  • [7] Coifman R. R., 1992, REV MAT IBEROAM, V8, P45
  • [8] FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES
    COIFMAN, RR
    ROCHBERG, R
    WEISS, G
    [J]. ANNALS OF MATHEMATICS, 1976, 103 (03) : 611 - 635
  • [9] Conway J.B, 1990, Graduate Texts in Mathematics
  • [10] Csato G, 2012, PROG NONLINEAR DIFFE, V83, P1, DOI 10.1007/978-0-8176-8313-9