Emerging trends in the development of flexible optrode arrays for electrophysiology

被引:4
作者
Almasri, Reem M. [1 ]
Ladouceur, Francois [2 ]
Mawad, Damia [4 ]
Esrafilzadeh, Dorna [1 ]
Firth, Josiah [3 ]
Lehmann, Torsten [2 ]
Poole-Warren, Laura A. [1 ,5 ]
Lovell, Nigel H. [1 ,5 ]
Al Abed, Amr [1 ]
机构
[1] UNSW, Grad Sch Biomed Engn, Sydney, NSW 2052, Australia
[2] UNSW, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[3] UNSW, Australian Natl Fabricat Facil, Canberra, ACT 2052, Australia
[4] UNSW, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[5] UNSW, Tyree Inst Heath Engn, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
INFRARED NEURAL STIMULATION; UP-CONVERSION NANOPARTICLES; LIGHT-EMITTING-DIODES; DEEP BRAIN-STIMULATION; EARLY EMBRYONIC HEARTS; IN-VIVO; OPTICAL STIMULATION; RETINAL PROSTHESIS; LASER STIMULATION; PHOTOVOLTAIC RESTORATION;
D O I
10.1063/5.0153753
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
引用
收藏
页数:28
相关论文
共 360 条
[81]   Gold Nanopost-Shell Arrays Fabricated by Nanoimprint Lithography as a Flexible Plasmonic Sensing Platform [J].
Farcau, Cosmin ;
Marconi, Daniel ;
Colnita, Alia ;
Brezestean, Ioana ;
Barbu-Tudoran, Lucian .
NANOMATERIALS, 2019, 9 (11)
[82]   Design and validation of a foldable and photovoltaic wide-field epiretinal prosthesis [J].
Ferlauto, Laura ;
Leccardi, Marta Jole Ildelfonsa Airaghi ;
Chenais, Naig Aurelia Ludmilla ;
Gillieron, Samuel Charles Antoine ;
Vagni, Paola ;
Bevilacqua, Michele ;
Wolfensberger, Thomas J. ;
Sivula, Kevin ;
Ghezzi, Diego .
NATURE COMMUNICATIONS, 2018, 9
[83]   A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application [J].
Ferrari, Marco ;
Quaresima, Valentina .
NEUROIMAGE, 2012, 63 (02) :921-935
[84]   Conjugated Polymers in Bioelectronics: Addressing the Interface Challenge [J].
Fidanovski, Kristina ;
Mawad, Damia .
ADVANCED HEALTHCARE MATERIALS, 2019, 8 (10)
[85]   Honeycomb-shaped electro-neural interface enables cellular-scale pixels in subretinal prosthesis [J].
Flores, Thomas ;
Huang, Tiffany ;
Bhuckory, Mohajeet ;
Ho, Elton ;
Chen, Zhijie ;
Dalal, Roopa ;
Galambos, Ludwig ;
Kamins, Theodore ;
Mathieson, Keith ;
Palanker, Daniel .
SCIENTIFIC REPORTS, 2019, 9 (1)
[86]   Cardiac Optogenetics in Atrial Fibrillation: Current Challenges and Future Opportunities [J].
Floria, Mariana ;
Radu, Smaranda ;
Gosav, Evelina Maria ;
Moraru, Aurelian Corneliu ;
Serban, Teodor ;
Carauleanu, Alexandru ;
Costea, Claudia Florida ;
Ouatu, Anca ;
Ciocoiu, Manuela ;
Tanase, Daniela Maria .
BIOMED RESEARCH INTERNATIONAL, 2020, 2020
[87]   Fiber-optic fluorescence imaging [J].
Flusberg, BA ;
Cocker, ED ;
Piyawattanametha, W ;
Jung, JC ;
Cheung, ELM ;
Schnitzer, MJ .
NATURE METHODS, 2005, 2 (12) :941-950
[88]   Optimizing thermal block length during infrared neural inhibition to minimize temperature thresholds [J].
Ford, Jeremy B. ;
Ganguly, Mohit ;
Zhuo, Junqi ;
McPheeters, Matthew T. ;
Jenkins, Michael W. ;
Chiel, Hillel J. ;
Jansen, E. Duco .
JOURNAL OF NEURAL ENGINEERING, 2021, 18 (05)
[89]   A review of optical pacing with infrared light [J].
Ford, S. M. ;
Watanabe, M. ;
Jenkins, M. W. .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (01)
[90]   Light-induced charge generation in polymeric nanoparticles restores vision in advanced-stage retinitis pigmentosa rats [J].
Francia, S. ;
Shmal, D. ;
Di Marco, S. ;
Chiaravalli, G. ;
Maya-Vetencourt, J. F. ;
Mantero, G. ;
Michetti, C. ;
Cupini, S. ;
Manfredi, G. ;
DiFrancesco, M. L. ;
Rocchi, A. ;
Perotto, S. ;
Attanasio, M. ;
Sacco, R. ;
Bisti, S. ;
Mete, M. ;
Pertile, G. ;
Lanzani, G. ;
Colombo, E. ;
Benfenati, F. .
NATURE COMMUNICATIONS, 2022, 13 (01)