Development of High-Performance Fly-Ash-Based Controlled Low-Strength Materials for Backfilling in Metropolitan Cities

被引:4
作者
Han, Jingyu [1 ]
Jo, Youngseok [2 ]
Kim, Yunhee [3 ]
Kim, Bumjoo [3 ]
机构
[1] Chemius Korea Co Ltd, Dept R&D, Sunchon 57942, South Korea
[2] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
[3] Dongguk Univ, Dept Civil & Environm Engn, Seoul 04620, South Korea
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 16期
关键词
controlled low-strength material; high flowability; backfilling; fly ash; calcium-sulfoaluminate-based binder; MATERIAL CLSM; HYDRATION; CEMENT; SLUDGE; SLAG;
D O I
10.3390/app13169377
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlled low-strength materials (CLSMs) have been developed using various byproducts for backfilling or void-filling around pipelines or culvert boxes. However, these CLSMs have encountered issues related to their inadequate placement around underground facilities, despite satisfying the performance requirements, especially flowability, recommended by the American Concrete Institute (ACI) 229 committee. In this study, a new CLSM is developed to ensure a significantly higher flowability, lower segregation, and faster installation compared with previously developed CLSMs. This is achieved through a series of laboratory tests. To enhance the flowability and prevent segregation, a calcium-sulfoaluminate-based binder and fly ash are used in combination with two types of additives. The measured flowability of the new CLSM is 700 mm, while its compressive strength and bleeding satisfy the general criteria specified by the ACI 229R-13. In addition, the performance of the developed CLSM is compared with that of predeveloped CLSMs. The new CLSM was not only shown to exhibit the highest flowability, but also to satisfy the specified requirements for compressive strength and bleeding. Overall, it is anticipated that the developed CLSM can significantly reduce the costs related to the disposal of old pavements, the installation of new pavements, and other construction expenses compared to the costs related to the conventional method, even though the expenses for the backfill materials could increase due to the higher production costs of CLSMs than soil. In addition, there is a need to investigate its field applicability in order to evaluate the precise costs, maintenance, and long-term stabilities after installation.
引用
收藏
页数:12
相关论文
共 56 条
[1]  
Abelleira A., The Design and Application of Controlled Low -Strength Materials (Flowable Fill)
[2]  
STM STP 1331, P19
[3]  
[Anonymous], 2016, ASTM D 6023
[4]  
[Anonymous], 2020, ASTM C109
[5]  
[Anonymous], 2013, ASTM D 6103
[6]  
[Anonymous], 2013, ACI 229R-13
[7]  
[Anonymous], 2018, ASTM D 4832
[8]  
[Anonymous], 2022, ASTM C 940
[9]  
[Anonymous], 1998, ASTM STP 1331
[10]  
Cho D.H., 2007, Ph.D. Dissertation