Coupled maize model: A 4D maize growth model based on growing degree days

被引:9
作者
Qian, Binxiang [1 ,2 ,3 ]
Huang, Wenjiang [1 ,2 ,3 ,4 ]
Xie, Donghui [5 ]
Ye, Huichun [1 ,2 ,3 ,4 ]
Guo, Anting [1 ,2 ,3 ,4 ]
Pan, Yuhao [1 ,2 ,3 ]
Jin, Yin [1 ,2 ,3 ]
Xie, Qiaoyun [6 ]
Jiao, Quanjun [1 ,2 ,3 ]
Zhang, Biyao [1 ]
Ruan, Chao [7 ]
Xu, Tianjun [8 ]
Zhang, Yong [8 ]
Nie, Tiange [8 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Earth Observat Hainan, Sanya 572029, Peoples R China
[5] Beijing Normal Univ, Inst Remote Sensing Sci & Engn, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[6] Univ Western Australia, Sch Engn, Perth, WA 6009, Australia
[7] Anhui Univ, Natl Engn Res Ctr Agroecol Big Data Anal & Applica, Hefei, Peoples R China
[8] Beijing Acad Agr & Forestry Sci, Maize Res Inst, Beijing, Peoples R China
基金
海南省自然科学基金; 中国国家自然科学基金;
关键词
Remote sensing; Maize growth model; 4D maize growth model; Maize canopy parameters; Growing degree days (GDDs); Coupled maize model; LEAF GROWTH; TEMPERATURE; ARCHITECTURE; SIMULATION; CANOPY; YIELD; SENESCENCE; RESPONSES; EQUATION; BIOMASS;
D O I
10.1016/j.compag.2023.108124
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Crop canopy parameters are critical for environmental remote sensing, describing crop phenotypes, and ensuring food security. Evaluating the effect of temperature on crop growth is crucial for estimating crop canopy pa-rameters. However, existing crop growth and plant functional-structural models cannot simultaneously model temperature responses, perform accurate dynamic simulations, and provide multi-scale computer visualizations. This limitation has hindered the application of structural models of maize plants for use in 3D radiative transfer models, crop structure evaluations, and crop phenotype descriptions. We improve the leaf/organ-level thermal-driven crop growth model (MAIZSIM) and the plant functional-structural algorithm. To address these limitations, we propose the coupled maize model, a four-dimensional (4D) growth model based on growing degree days. This model can simulate and visualize the structural parameters of the maize canopy at the organ, plant, seasonal, and population levels. The model outputs three-dimensional (3D) predictions of the maize structure (file format.obj), enabling editing and 3D visualizations. We use maize datasets from multiple phenological periods to test the proposed model's accuracy and stability in simulating the canopy parameters at multiple levels. The results show that the normalized root mean square errors (NRMSEs) between the simulated and measured maize leaf size, area, leaf node height, and vein curve derived from the coupled maize model are below 0.1, demonstrating the model's high accuracy.
引用
收藏
页数:17
相关论文
共 33 条
[1]   Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model [J].
Allen, MT ;
Prusinkiewicz, P ;
DeJong, TM .
NEW PHYTOLOGIST, 2005, 166 (03) :869-880
[2]   Plant population and row spacing effects on corn: Plant growth, phenology, and grain yield [J].
Bernhard, Brad J. ;
Below, Frederick E. .
AGRONOMY JOURNAL, 2020, 112 (04) :2456-2465
[3]   Improved methods for predicting individual leaf area and leaf senescence in maize (Zea mays) [J].
Birch, CJ ;
Hammer, GL ;
Rickert, KG .
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 1998, 49 (02) :249-262
[4]   Morphological analysis of leaf growth of maize: responses to temperature and light intensity [J].
Bos, HJ ;
Tijani-Eniola, H ;
Struik, PC .
NETHERLANDS JOURNAL OF AGRICULTURAL SCIENCE, 2000, 48 (02) :181-198
[5]   Two decades of research with the GreenLab model in agronomy [J].
de Reffye, Philippe ;
Hu, Baogang ;
Kang, Mengzhen ;
Letort, Veronique ;
Jaeger, Marc .
ANNALS OF BOTANY, 2021, 127 (03) :281-295
[6]   Modeling maize canopy 3D architecture -: Application to reflectance simulation [J].
España, ML ;
Baret, F ;
Aries, F ;
Chelle, M ;
Andrieu, B ;
Prévot, L .
ECOLOGICAL MODELLING, 1999, 122 (1-2) :25-43
[7]   A 3D architectural and process-based model of maize development [J].
Fournier, C ;
Andrieu, B .
ANNALS OF BOTANY, 1998, 81 (02) :233-250
[8]   Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery [J].
Gao, Feng ;
Anderson, Martha C. ;
Zhang, Xiaoyang ;
Yang, Zhengwei ;
Alfieri, Joseph G. ;
Kustas, William P. ;
Mueller, Rick ;
Johnson, David M. ;
Prueger, John H. .
REMOTE SENSING OF ENVIRONMENT, 2017, 188 :9-25
[9]   RECENT IMPROVEMENTS IN THE DART MODEL FOR ATMOSPHERE, TOPOGRAPHY, LARGE LANDSCAPE, CHLOROPHYLL FLUORESCENCE, SATELLITE IMAGE INVERSION [J].
Gastellu-Etchegorry, J. P. ;
Wang, Y. ;
Regaieg ;
Yin, T. ;
Malenovsky, Z. ;
Zhen, Z. ;
Yang, X. ;
Tao, Z. ;
Landier, L. ;
Al Bitar, A. ;
Deschamps ;
Laurel, N. ;
Guilleux, J. ;
Chavanon, E. ;
Cao, B. ;
Qi, J. ;
Kallel, A. ;
Mitraka, Z. ;
Chrysoulakis, N. ;
Cook, B. ;
Morton, D. .
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, :3455-3458
[10]   SIMULATION OF MAIZE PHENOLOGY [J].
GRANT, RF .
AGRONOMY JOURNAL, 1989, 81 (03) :451-457