Quantum chaos in 2D gravity

被引:20
作者
Altland, Alexander [1 ]
Post, Boris [2 ]
Sonner, Julian [3 ]
van der Heijden, Jeremy [2 ]
Verlinde, Erik [2 ]
机构
[1] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany
[2] Univ Amsterdam, Inst Theoret Phys, Sci Pk 904,Postbus 9448, NL-1090 GL Amsterdam, Netherlands
[3] Univ Geneva, Dept Theoret Phys, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
来源
SCIPOST PHYSICS | 2023年 / 15卷 / 02期
基金
欧洲研究理事会;
关键词
WEIL-PETERSSON VOLUMES; MODULI SPACE; TOPOLOGICAL STRINGS; INTERSECTION THEORY; MATRIX; INVARIANTS; ENSEMBLES; SYMMETRY; CURVES;
D O I
10.21468/SciPostPhys.15.2.064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantitative and fully non-perturbative description of the ergodic phase of quantum chaos in the setting of two-dimensional gravity. To this end we describe the doubly non-perturbative completion of semiclassical 2D gravity in terms of its associated universe field theory. The guiding principle of our analysis is a flavor-matrix theory (fMT) description of the ergodic phase of holographic gravity, which exhibits U(n|n) causal symmetry breaking and restoration. JT gravity and its 2D-gravity cousins alone do not realize an action principle with causal symmetry, however we demonstrate that their universe field theory, the Kodaira-Spencer (KS) theory of gravity, does. After directly deriving the fMT from brane-antibrane correlators in KS theory, we show that causal symmetry breaking and restoration can be understood geometrically in terms of different (topological) D-brane vacua. We interpret our results in terms of an open-closed string duality between holomorphic Chern-Simons theory and its closed-string equivalent, the KS theory of gravity. Emphasis will be put on relating these geometric principles to the characteristic spectral correlations of the quantum ergodic phase.
引用
收藏
页数:37
相关论文
共 78 条
[1]   Topological strings and integrable hierarchies [J].
Aganagic, M ;
Dijkgraaf, R ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 261 (02) :451-516
[2]   The topological vertex [J].
Aganagic, M ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :425-478
[3]  
Aganagic M, 2000, Arxiv, DOI arXiv:hep-th/0012041
[4]   THE ITZYKSON-ZUBER INTEGRAL FOR U(M/N) [J].
ALFARO, J ;
MEDINA, R ;
URRUTIA, LF .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (06) :3085-3093
[5]   Models of AdS2 backreaction and holography [J].
Almheiri, Ahmed ;
Polchinski, Joseph .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11) :1-19
[6]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[7]   Late time physics of holographic quantum chaos [J].
Altland, Alexander ;
Sonner, Julian .
SCIPOST PHYSICS, 2021, 11 (02)
[8]   From operator statistics to wormholes [J].
Altland, Alexander ;
Bagrets, Dmitry ;
Nayak, Pranjal ;
Sonner, Julian ;
Vielma, Manuel .
PHYSICAL REVIEW RESEARCH, 2021, 3 (03)
[9]   Quantum ergodicity in the SYK model [J].
Altland, Alexander ;
Bagrets, Dmitry .
NUCLEAR PHYSICS B, 2018, 930 :45-68
[10]   SPECTRAL STATISTICS BEYOND RANDOM-MATRIX THEORY [J].
ANDREEV, AV ;
ALTSHULER, BL .
PHYSICAL REVIEW LETTERS, 1995, 75 (05) :902-905