Polylactic Acid Nanofiber Membranes Grafted with Carbon Nanotubes with Enhanced Mechanical and Electrical Properties

被引:5
作者
Gisbert Roca, Fernando [1 ]
Martinez-Ramos, Cristina [1 ,2 ]
Ivashchenko, Sergiy [1 ]
Garcia-Bernabe, Abel [3 ]
Compan, Vicente [3 ]
Pradas, Manuel Monleon [1 ,4 ]
机构
[1] Univ Politecn Valencia, Ctr Biomat & Tissue Engn, Valencia 46022, Spain
[2] Univ Jaume 1, Unitat Predept Med, Castellon De La Plana 12071, Spain
[3] Univ Politecn Valencia, Dept Termodinam Aplicada, Valencia 46022, Spain
[4] CIBER BBN Biomed Res Networking Ctr Bioengn Bioma, Madrid 28029, Spain
关键词
polylactic acid; carbon nanotubes; electrospinning; nanofiber membranes; grafting; ENERGY-CONVERSION; NANOCOMPOSITES; NANOMATERIALS; DISPERSION; COMPOSITE; POLY(L-LACTIDE); CONDUCTIVITY; PERMITTIVITY; PERFORMANCE; FIBER;
D O I
10.1021/acsapm.3c00776
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electroconductive materials based on poly(lactic acid)(PLA) electrospinningmembranes grafted with carbon nanotubes (CNTs) functionalized withthe carboxylic group R-COOH have been obtained. PLA electrospunmembranes were modified with sulfuric acid (H2SO4) to oxidize its surface to subsequently graft the CNTs, the treatmenttime and drying of the membranes before grafting with CNTs being critical,influencing the final properties of the materials. SEM images showedthat CNTs presented a uniform distribution on the surface of the PLAnanofibers, while FTIR spectra of PLA-CNTs materials revealed characteristichydroxyl groups, as evidenced by absorption peaks of CNTs. Thanksto the grafting with CNTs, the resulting PLA-CNTs membranes presentan improvement of the mechanical and conductive properties when comparedwith PLA membranes. On the one hand, grafting with CNTs causes thenanofibers to have greater rigidity, so they are more manipulableand can more easily preserve their conformation when stress is exerted.On the other hand, grafting with CNTs allows elimination of the insulatingbarrier of the PLA, reducing the resistivity and providing high electricalconductivity to the PLA-CNTs membranes. The incorporation of CNTsinto PLA electrospun membranes is expected to offer greater functionalitiesto electrospun composite nanofibers for medical and industrial applications.
引用
收藏
页码:6081 / 6094
页数:14
相关论文
共 95 条
[21]   Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers [J].
Du, Donghe ;
Tang, Zhenghua ;
Ouyang, Jianyong .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (04) :883-889
[22]   Electrical characteristics of carbon nanotube-doped composites [J].
Eletskii, A. V. ;
Knizhnik, A. A. ;
Potapkin, B. V. ;
Kenny, J. M. .
PHYSICS-USPEKHI, 2015, 58 (03) :209-251
[23]  
Endo M, 2008, TOP APPL PHYS, V111, P13, DOI 10.1007/978-3-540-72865-8_2
[24]   Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube - Enabled Architecture [J].
Evanoff, Kara ;
Khan, Javed ;
Balandin, Alexander A. ;
Magasinski, Alexandre ;
Ready, W. Jud ;
Fuller, Thomas F. ;
Yushin, Gleb .
ADVANCED MATERIALS, 2012, 24 (04) :533-+
[25]   Cellulose Fiber-Reinforced Polylactic Acid [J].
Frone, A. N. ;
Berlioz, S. ;
Chailan, J. -F. ;
Panaitescu, D. M. ;
Donescu, D. .
POLYMER COMPOSITES, 2011, 32 (06) :976-985
[26]   Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences [J].
Gohardani, Omid ;
Artegui Elola, Maialen Chap ;
Elizetxea, Cristina .
PROGRESS IN AEROSPACE SCIENCES, 2014, 70 :42-68
[27]   Properties and Application of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type [J].
Green, Alexander A. ;
Hersam, Mark C. .
ACS NANO, 2011, 5 (02) :1459-1467
[28]   Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks [J].
Greenhoe, Brian M. ;
Hassan, Mohammad K. ;
Wiggins, Jeffrey S. ;
Mauritz, Kenneth A. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2016, 54 (19) :1918-1923
[29]   Poly(lactic acid) fiber: An overview [J].
Gupta, Bhuvanesh ;
Revagade, Nilesh ;
Hilborn, Jons .
PROGRESS IN POLYMER SCIENCE, 2007, 32 (04) :455-482
[30]   Carbon nanotubes [J].
Haddon, RC .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :997-997