Generalized AB-Fractional Operator Inclusions of Hermite-Hadamard's Type via Fractional Integration

被引:8
作者
Bin-Mohsin, Bandar [1 ]
Awan, Muhammad Uzair [2 ]
Javed, Muhammad Zakria [2 ]
Khan, Awais Gul [2 ]
Budak, Huseyin [3 ]
Mihai, Marcela V. [4 ]
Noor, Muhammad Aslam [5 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan
[3] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
[4] Romanian Math Soc, Dept Sci Method Sess, Branch Bucharest, Acad St 14, RO-010014 Bucharest, Romania
[5] COMSATS Univ Islamabad, Dept Math, Islamabad 4000, Pakistan
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 05期
关键词
Hermite-Hadamard inequality; pachpatte inequality; Mittag-Leffler; fractional integrals; preinvex function; Fejer; CONVEX-FUNCTIONS; INEQUALITIES;
D O I
10.3390/sym15051012
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this research is to explore fractional integral inequalities that involve interval-valued preinvex functions. Initially, a new set of fractional operators is introduced that uses the extended generalized Mittag-Leffler function E-mu,alpha,l(gamma,delta, k,c) (tau; p) as a kernel in the interval domain. Additionally, a new form of Atangana-Baleanu operator is defined using the same kernel, which unifies multiple existing integral operators. By varying the parameters in E-mu,alpha,l(gamma,delta, k,c)(tau; p), several new fractional operators are obtained. This study then utilizes the generalized AB integral operators and the preinvex interval-valued property of functions to establish new Hermite-Hadamard, Pachapatte, and Hermite-Hadamard-Fejer inequalities. The results are supported by numerical examples, graphical illustrations, and special cases.
引用
收藏
页数:21
相关论文
共 36 条
[1]   On new fractional integral inequalities forp-convexity within interval-valued functions [J].
Abdeljawad, Thabet ;
Rashid, Saima ;
Khan, Hasib ;
Chu, Yu-Ming .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[2]   Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued (h1, h2)-Godunova-Levin functions [J].
Afzal, Waqar ;
Shabbir, Khurram ;
Botmart, Thongchai .
AIMS MATHEMATICS, 2022, 7 (10) :19372-19387
[3]   New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators [J].
Akdemir, Ahmet Ocak ;
Butt, Saad Ihsan ;
Nadeem, Muhammad ;
Ragusa, Maria Alessandra .
MATHEMATICS, 2021, 9 (02) :1-11
[4]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[5]   Inclusions Involving Interval-Valued Harmonically Co-Ordinated Convex Functions and Raina's Fractional Double Integrals [J].
Bin Mohsin, Bandar ;
Awan, Muhammad Uzair ;
Javed, Muhammad Zakria ;
Budak, Huseyin ;
Khan, Awais Gul ;
Noor, Muhammad Aslam .
JOURNAL OF MATHEMATICS, 2022, 2022
[6]   Some General Fractional Integral Inequalities Involving LR-Bi-Convex Fuzzy Interval-Valued Functions [J].
Bin-Mohsin, Bandar ;
Rafique, Sehrish ;
Cesarano, Clemente ;
Javed, Muhammad Zakria ;
Awan, Muhammad Uzair ;
Kashuri, Artion ;
Noor, Muhammad Aslam .
FRACTAL AND FRACTIONAL, 2022, 6 (10)
[7]  
Breckner W. W., 1993, Revue d'Analyse Numerique et de Theorie de l'Approximation, V22, P39
[8]   FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS [J].
Budak, Huseyin ;
Tunc, Tuba ;
Sarikaya, Mehmet Zeki .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) :705-718
[9]   Hermite-Hadamard Type Inequalities via Generalized Harmonic Exponential Convexity and Applications [J].
Butt, Saad Ihsan ;
Tariq, Muhammad ;
Aslam, Adnan ;
Ahmad, Hijaz ;
Nofal, Taher A. .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[10]  
Cerone P., 2000, KOREAN J COMPUT APPL, V2, P357, DOI [/10.1007/BF02941972, DOI 10.1007/BF02941972]