Transformer-Based Neural Augmentation of Robot Simulation Representations

被引:1
作者
Serifi, Agon [1 ,2 ]
Knoop, Espen [3 ]
Schumacher, Christian [3 ]
Kumar, Naveen [3 ]
Gross, Markus [1 ,2 ]
Bacher, Moritz [3 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, Comp Grap Lab, CH-8092 Zurich, Switzerland
[2] Disney Res, CH-8006 Zurich, Switzerland
[3] Disney Res, Glendale, CA 91201 USA
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2023年 / 8卷 / 06期
关键词
Robots; Actuators; Transformers; Training; Analytical models; Predictive models; Computer architecture; Deep learning methods; simulation and animation; neural augmentation; robotics; dynamics;
D O I
10.1109/LRA.2023.3271812
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Simulation representations of robots have advanced in recent years. Yet, there remain significant sim-to-real gaps because of modeling assumptions and hard-to-model behaviors such as friction. In this letter, we propose to augment common simulation representations with a transformer-inspired architecture, by training a network to predict the true state of robot building blocks given their simulation state. Because we augment building blocks, rather than the full simulation state, we make our approach modular which improves generalizability and robustness. We use our neural network to augment the state of robot actuators, and also of rigid body states. Our actuator augmentation generalizes well across robots, and our rigid body augmentation results in improvements even under high uncertainty in model parameters.
引用
收藏
页码:3748 / 3755
页数:8
相关论文
共 50 条
[41]   A transformer-based framework for enterprise sales forecasting [J].
Sun, Yupeng ;
Li, Tian .
PEERJ COMPUTER SCIENCE, 2024, 10 :1-14
[42]   Testing Stimulus Equivalence in Transformer-Based Agents [J].
Carrillo, Alexis ;
Betancort, Moises .
FUTURE INTERNET, 2024, 16 (08)
[43]   Transformer-Based Seismic Image Enhancement: A Novel Approach for Improved Resolution [J].
Park, Jin-Yeong ;
Saad, Omar M. ;
Oh, Ju-Won ;
Alkhalifah, Tariq .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
[44]   Transformer-Based Efficient Salient Instance Segmentation Networks With Orientative Query [J].
Pei, Jialun ;
Cheng, Tianyang ;
Tang, He ;
Chen, Chuanbo .
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 :1964-1978
[45]   Transformer-Based Model for Monocular Visual Odometry: A Video Understanding Approach [J].
Francani, Andre O. ;
Maximo, Marcos R. O. A. .
IEEE ACCESS, 2025, 13 :13959-13971
[46]   Benchmarking Inference of Transformer-Based Transcription Models With Clustering on Embedded GPUs [J].
Schubert, Marika E. ;
Langerman, David ;
George, Alan D. .
IEEE ACCESS, 2024, 12 :123276-123293
[47]   A Transformer-Based Model for State of Charge Estimation of Electric Vehicle Batteries [J].
Yilmaz, Metin ;
Cinar, Eyup ;
Yazici, Ahmet .
IEEE ACCESS, 2025, 13 :33035-33048
[48]   Transformer-Based Water Quality Forecasting With Dual Patch and Trend Decomposition [J].
Lin, Yongze ;
Qiao, Junfei ;
Bi, Jing ;
Yuan, Haitao ;
Wang, Mengyuan ;
Zhang, Jia ;
Zhou, MengChu .
IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (08) :10987-10997
[49]   A Transformer-Based Thermal Surrogate Model for Cooling Control in Data Centers [J].
Zhou, Hanchen ;
Mu, Ni ;
Jia, Qing-Shan .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01) :644-651
[50]   Adaptation of Transformer-Based Models for Depression Detection [J].
Adebanji, Olaronke O. ;
Ojo, Olumide E. ;
Calvo, Hiram ;
Gelbukh, Irina ;
Sidorov, Grigori .
COMPUTACION Y SISTEMAS, 2024, 28 (01) :151-165