Transformer-Based Neural Augmentation of Robot Simulation Representations

被引:1
作者
Serifi, Agon [1 ,2 ]
Knoop, Espen [3 ]
Schumacher, Christian [3 ]
Kumar, Naveen [3 ]
Gross, Markus [1 ,2 ]
Bacher, Moritz [3 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, Comp Grap Lab, CH-8092 Zurich, Switzerland
[2] Disney Res, CH-8006 Zurich, Switzerland
[3] Disney Res, Glendale, CA 91201 USA
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2023年 / 8卷 / 06期
关键词
Robots; Actuators; Transformers; Training; Analytical models; Predictive models; Computer architecture; Deep learning methods; simulation and animation; neural augmentation; robotics; dynamics;
D O I
10.1109/LRA.2023.3271812
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Simulation representations of robots have advanced in recent years. Yet, there remain significant sim-to-real gaps because of modeling assumptions and hard-to-model behaviors such as friction. In this letter, we propose to augment common simulation representations with a transformer-inspired architecture, by training a network to predict the true state of robot building blocks given their simulation state. Because we augment building blocks, rather than the full simulation state, we make our approach modular which improves generalizability and robustness. We use our neural network to augment the state of robot actuators, and also of rigid body states. Our actuator augmentation generalizes well across robots, and our rigid body augmentation results in improvements even under high uncertainty in model parameters.
引用
收藏
页码:3748 / 3755
页数:8
相关论文
共 50 条
  • [31] Temporal fusion transformer-based prediction in aquaponics
    Metin, Ahmet
    Kasif, Ahmet
    Catal, Cagatay
    [J]. JOURNAL OF SUPERCOMPUTING, 2023, 79 (17) : 19934 - 19958
  • [32] Transformer-Based Detector for OFDM With Index Modulation
    Zhang, Dexin
    Wang, Sixian
    Niu, Kai
    Dai, Jincheng
    Wang, Sen
    Yuan, Yifei
    [J]. IEEE COMMUNICATIONS LETTERS, 2022, 26 (06) : 1313 - 1317
  • [33] Power substation load forecasting using interpretable transformer-based temporal fusion neural networks
    Ferreira, Andreia B. A.
    Leite, Jonatas B.
    Salvadeo, Denis H. P.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2025, 238
  • [34] BlinkLinMulT: Transformer-Based Eye Blink Detection
    Fodor, Adam
    Fenech, Kristian
    Lorincz, Andras
    [J]. JOURNAL OF IMAGING, 2023, 9 (10)
  • [35] A Transformer-Based Network for Hyperspectral Object Tracking
    Gao, Long
    Chen, Langkun
    Liu, Pan
    Jiang, Yan
    Xie, Weiying
    Li, Yunsong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [36] Transformer-based mass detection in digital mammograms
    Betancourt Tarifa A.S.
    Marrocco C.
    Molinara M.
    Tortorella F.
    Bria A.
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (03) : 2723 - 2737
  • [37] Transformer-Based Reconstruction for Fourier Ptychographic Microscopy
    Zhao, Lin
    Zhou, Xuhui
    Lu, Xin
    Tong, Haiping
    Fang, Hui
    [J]. IEEE ACCESS, 2023, 11 : 94536 - 94544
  • [38] Transformer-based Summarization by Exploiting Social Information
    Minh-Tien Nguyen
    Van-Chien Nguyen
    Huy-The Vu
    Van-Hau Nguyen
    [J]. 2020 12TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (IEEE KSE 2020), 2020, : 25 - 30
  • [39] A Review of Transformer-Based Approaches for Image Captioning
    Ondeng, Oscar
    Ouma, Heywood
    Akuon, Peter
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [40] Transformer-Based Music Language Modelling and Transcription
    Zonios, Christos
    Pavlopoulos, John
    Likas, Aristidis
    [J]. PROCEEDINGS OF THE 12TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE, SETN 2022, 2022,