Single-Pixel Hyperspectral Imaging via an Untrained Convolutional Neural Network

被引:8
作者
Wang, Chen-Hui [1 ]
Li, Hong-Ze [1 ]
Bie, Shu-Hang [1 ]
Lv, Rui-Bing [1 ]
Chen, Xi-Hao [1 ]
机构
[1] Liaoning Univ, Sch Phys, Key Lab Optoelect Devices & Detect Technol, Shenyang 110036, Peoples R China
关键词
single-pixel imaging; untrained neural network; hyperspectral imaging; deep learning; deep image prior;
D O I
10.3390/photonics10020224
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Single-pixel hyperspectral imaging (HSI) has received a lot of attention in recent years due to its advantages of high sensitivity, wide spectral ranges, low cost, and small sizes. In this article, we perform a single-pixel HSI experiment based on an untrained convolutional neural network (CNN) at an ultralow sampling rate, where the high-quality retrieved images of the target objects can be achieved by every visible wavelength of a light source from 432 nm to 680 nm. Specifically, we integrate the imaging physical model of single-pixel HSI into a randomly initialized CNN, which allows the images to be reconstructed by relying solely on the interaction between the imaging physical process and the neural network without pre-training the neural network.
引用
收藏
页数:12
相关论文
共 62 条
[1]   Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review [J].
Adam, Elhadi ;
Mutanga, Onisimo ;
Rugege, Denis .
WETLANDS ECOLOGY AND MANAGEMENT, 2010, 18 (03) :281-296
[2]   MULTISPECTRAL IMAGING OF BURN WOUNDS - A NEW CLINICAL INSTRUMENT FOR EVALUATING BURN DEPTH [J].
AFROMOWITZ, MA ;
CALLIS, JB ;
HEIMBACH, DM ;
DESOTO, LA ;
NORTON, MK .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1988, 35 (10) :842-850
[3]   Compressive Coded Aperture Spectral Imaging [J].
Arce, Gonzalo R. ;
Brady, David J. ;
Carin, Lawrence ;
Arguello, Henry ;
Kittle, David S. .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :105-115
[4]   A FRAMEWORK FOR AN ARTIFICIAL NEURAL NETWORK ENABLED SINGLE PIXEL HYPERSPECTRAL IMAGER [J].
Arias, Fernando ;
Sierra, Heidy ;
Arzuaga, Emmanuel .
2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
[5]   Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains [J].
August, Yitzhak ;
Vachman, Chaim ;
Rivenson, Yair ;
Stern, Adrian .
APPLIED OPTICS, 2013, 52 (10) :D46-D54
[6]   On the use of deep learning for computational imaging [J].
Barbastathis, George ;
Ozcan, Aydogan ;
Situ, Guohai .
OPTICA, 2019, 6 (08) :921-943
[7]   Multispectral imaging using a single bucket detector [J].
Bian, Liheng ;
Suo, Jinli ;
Situ, Guohai ;
Li, Ziwei ;
Fan, Jingtao ;
Chen, Feng ;
Dai, Qionghai .
SCIENTIFIC REPORTS, 2016, 6
[8]   Hyperspectral imaging applied to medical diagnoses and food safety [J].
Carrasco, O ;
Gomez, R ;
Chainani, A ;
Roper, W .
GEO-SPATIAL AND TEMPORAL IMAGE AND DATA EXPLOITATION III, 2003, 5097 :215-221
[9]   Optical encryption based on computational ghost imaging [J].
Clemente, Pere ;
Duran, Vicente ;
Torres-Company, Victor ;
Tajahuerce, Enrique ;
Lancis, Jesus .
OPTICS LETTERS, 2010, 35 (14) :2391-2393
[10]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306