A Miniaturized Tri-Wideband Sierpinski Hexagonal-Shaped Fractal Antenna for Wireless Communication Applications

被引:21
作者
Benkhadda, Omaima [1 ]
Saih, Mohamed [1 ]
Ahmad, Sarosh [2 ,3 ]
Al-Gburi, Ahmed Jamal Abdullah [4 ]
Zakaria, Zahriladha [4 ]
Chaji, Kebir [1 ]
Reha, Abdelati [5 ]
机构
[1] Sultan Moulay Slimane Univ, Fac Sci & Technol, Microelect Embedded Syst & Telecommun Team, Beni Mellal 23000, Morocco
[2] Govt Coll Univ Faisalabad GCUF, Dept Elect Engn & Technol, Faisalabad 88000, Pakistan
[3] Univ Carlos III Madrid, Dept Signal Theory & Commun, Leganes 28911, Spain
[4] Univ Teknikal Malaysia Melaka UTeM, Ctr Telecommun Res & Innovat CeTRI, Fak Kejuruteraan Elekt & Kejuruteraan Komputer FKE, Durian Tungal 76100, Malaysia
[5] ISGA Marrakech, Lab Innovat Management & Engn Enterprise LIMIE, Marrakech 40000, Morocco
关键词
tri-wideband; fractal antenna; Sierpinski hexagonal fractal; wireless communication; KOCH; MINKOWSKI; DESIGN;
D O I
10.3390/fractalfract7020115
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a new tri-wideband fractal antenna for use in wireless communication applications. The fractal manufactured antenna developed has a Sierpinski hexagonal-shaped radiating element and a partial ground plane loaded with three rectangular stubs and three rectangular slits. The investigated antenna has a small footprint of 0.19 lambda(0) x 0.24 lambda(0) x 0.0128 lambda(0) and improved bandwidth and gain. According to the measurements, the designed antenna resonates throughout the frequency ranges of 2.19-4.43 GHz, 4.8-7.76 GHz, and 8.04-11.32 GHz. These frequency ranges are compatible with a variety of wireless technologies, including WLAN, WiMAX, ISM, LTE, RFID, Bluetooth, 5G spectrum band, C-band, and X-band. The investigated antenna exhibited good gain with almost omnidirectional radiation patterns. Utilizing CST MWS, the performance of the suggested Sierpinski hexagonal-shaped fractal antenna was achieved. The findings were then compared to the experimental results, which were found to be in strong agreement.
引用
收藏
页数:18
相关论文
共 38 条
[31]   Nanoassembly of a fractal polymer: A molecular "Sierpinski hexagonal gasket" [J].
Newkome, George R. ;
Wang, Pingshan ;
Moorefield, Charles N. ;
Cho, Tae Joon ;
Mohapatra, Prabhu P. ;
Li, Sinan ;
Hwang, Seok-Ho ;
Lukoyanova, Olena ;
Echegoyen, Luis ;
Palagallo, Judith A. ;
Iancu, Violeta ;
Hla, Saw-Wai .
SCIENCE, 2006, 312 (5781) :1782-1785
[32]   Minkowski's Loop Fractal Antenna Dedicated to Sixth Generation (6G) Communication [J].
Paun, Maria-Alexandra ;
Nichita, Mihai-Virgil ;
Paun, Vladimir-Alexandru ;
Paun, Viorel-Puiu .
FRACTAL AND FRACTIONAL, 2022, 6 (07)
[33]   A Multiband antenna using plus-shaped fractal-like elements and stepped ground plane [J].
Puri, Shiv C. ;
Das, Sushrut ;
Tiary, Madan G. .
INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2020, 30 (05)
[34]   Modified minkowski fractal multiband antenna with circular-shaped split-ring resonator for wireless applications [J].
Rengasamy, Rajkumar ;
Dhanasekaran, Dileepan ;
Chakraborty, Chinmay ;
Ponnan, Suresh .
MEASUREMENT, 2021, 182
[35]   Design methodology of the fractal annular ring antennas with the wideband operation [J].
SamadpourHendevari, Maryam ;
Pourziad, Ali ;
Nikmehr, Saeid .
IET MICROWAVES ANTENNAS & PROPAGATION, 2019, 13 (14) :2464-2469
[36]   Multiband metamaterial-inspired antenna using split ring resonator [J].
Selvi, N. Thamil ;
Selvan, P. Thiruvalar ;
Babu, S. P. K. ;
Pandeeswari, R. .
COMPUTERS & ELECTRICAL ENGINEERING, 2020, 84
[37]   A Novel Hybrid Fractal Antenna for Wireless Applications [J].
Sharma, Narinder ;
Sharma, Vipul ;
Bhatia, Sumeet S. .
PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2018, 73 :25-35
[38]   Multiband low-cost fractal antenna based on parasitic split ring resonators [J].
Sharma, Vipul ;
Lakwar, Neeraj ;
Kumar, Nitin ;
Garg, Tanuj .
IET MICROWAVES ANTENNAS & PROPAGATION, 2018, 12 (06) :913-919