Universal sums of triangular numbers and squares

被引:0
|
作者
Yang, Zichen [1 ]
机构
[1] Univ Hong Kong, Dept Math, Pokfulam, Hong Kong, Peoples R China
关键词
Sums of polygonal numbers; Theta series; Modular forms; MIXED SUMS; FORMS;
D O I
10.1016/j.jnt.2023.12.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study universal sums of triangular numbers and squares. Specifically, we prove that a sum of triangular numbers and squares is universal if and only if it represents 1,2,3,4,5,6,7,8,10,13,14,15,18,19,20,23,27,28,34,41,47, and 48. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 32 条
  • [21] Infinite families of formulas for sums of integer squares
    Masri, Nadia
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (04) : 613 - 626
  • [22] Universal sums of three quadratic polynomials
    Sun, Zhi-Wei
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (03) : 501 - 520
  • [23] A sum of three nonzero triangular numbers
    Kim, Daejun
    Lee, Jeongwon
    Oh, Byeong-Kweon
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (10) : 2279 - 2300
  • [24] Sums of nonvanishing integral squares in real quadratic fields
    Kim, Byeong Moon
    Kim, Ji Young
    JOURNAL OF NUMBER THEORY, 2017, 177 : 497 - 515
  • [25] Sums of four polygonal numbers: Precise formulas
    Li, Jialin
    Wang, Haowu
    JOURNAL OF NUMBER THEORY, 2025, 271 : 407 - 422
  • [26] Conjectures of Sun About Sums of Polygonal Numbers
    Bringmann K.
    Kane B.
    La Matematica, 2022, 1 (4): : 809 - 828
  • [27] Amoebas, nonnegative polynomials and sums of squares supported on circuits
    Iliman, Sadik
    de Wolff, Timo
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2016, 3
  • [28] SOME UNIVERSAL QUADRATIC SUMS OVER THE INTEGERS
    Wu, Hai-Liang
    Sun, Zhi-Wei
    ELECTRONIC RESEARCH ARCHIVE, 2019, 27 : 69 - 87
  • [29] A SHORT PROOF OF MILNE'S FORMULAS FOR SUMS OF INTEGER SQUARES
    Long, Ling
    Yang, Yifan
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2005, 1 (04) : 533 - 551
  • [30] SIGNATURES, SUMS OF HERMITIAN SQUARES AND POSITIVE CONES ON ALGEBRAS WITH INVOLUTION
    Astier, Vincent
    Unger, Thomas
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2018, 25 : 16 - 26