Tapioca: a platform for predicting de novo protein-protein interactions in dynamic contexts

被引:6
|
作者
Reed, Tavis. J. [1 ,2 ,3 ]
Tyl, Matthew. D. [3 ]
Tadych, Alicja [1 ,2 ]
Troyanskaya, Olga. G. [1 ,2 ,4 ]
Cristea, Ileana. M. [3 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Carl Icahn Lab, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[3] Princeton Univ, Dept Mol Biol, Princeton, NJ 08540 USA
[4] Simons Fdn, Flatiron Inst, New York, NY 10010 USA
基金
美国国家科学基金会;
关键词
SARCOMA-ASSOCIATED HERPESVIRUS; NETWORKS; DISEASE; KINASE;
D O I
10.1038/s41592-024-02179-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Protein-protein interactions (PPIs) drive cellular processes and responses to environmental cues, reflecting the cellular state. Here we develop Tapioca, an ensemble machine learning framework for studying global PPIs in dynamic contexts. Tapioca predicts de novo interactions by integrating mass spectrometry interactome data from thermal/ion denaturation or cofractionation workflows with protein properties and tissue-specific functional networks. Focusing on the thermal proximity coaggregation method, we improved the experimental workflow. Finely tuned thermal denaturation afforded increased throughput, while cell lysis optimization enhanced protein detection from different subcellular compartments. The Tapioca workflow was next leveraged to investigate viral infection dynamics. Temporal PPIs were characterized during the reactivation from latency of the oncogenic Kaposi's sarcoma-associated herpesvirus. Together with functional assays, NUCKS was identified as a proviral hub protein, and a broader role was uncovered by integrating PPI networks from alpha- and betaherpesvirus infections. Altogether, Tapioca provides a web-accessible platform for predicting PPIs in dynamic contexts. Tapioca is an ensemble machine learning framework for studying protein-protein interactions (PPIs) that facilitates integration of curve-based dynamic PPI data from thermal proximity coaggregation, ion-based proteome-integrated solubility alteration or cofractionation mass spectrometry data with static interaction data to predict PPIs in dynamic contexts.
引用
收藏
页码:488 / 500
页数:41
相关论文
共 50 条
  • [31] A scalable double-barcode sequencing platform for characterization of dynamic protein-protein interactions
    Schlecht, Ulrich
    Liu, Zhimin
    Blundell, Jamie R.
    St. Onge, Robert P.
    Levy, Sasha F.
    NATURE COMMUNICATIONS, 2017, 8
  • [32] A scalable double-barcode sequencing platform for characterization of dynamic protein-protein interactions
    Ulrich Schlecht
    Zhimin Liu
    Jamie R. Blundell
    Robert P. St.Onge
    Sasha F. Levy
    Nature Communications, 8
  • [33] Integrated network analysis platform for protein-protein interactions
    Wu, Jianmin
    Vallenius, Tea
    Ovaska, Kristian
    Westermarck, Jukka
    Makela, Tomi P.
    Hautaniemi, Sampsa
    NATURE METHODS, 2009, 6 (01) : 75 - 77
  • [34] PRIMOS: AN INTEGRATED PLATFORM FOR EXPLORING PROTEIN-PROTEIN INTERACTIONS
    Kern, Thomas
    Kommenda, Michael
    Dorfer, Viktoria
    Bauer, Johann W.
    Oender, Kamil
    EMSS 2009: 21ST EUROPEAN MODELING AND SIMULATION SYMPOSIUM, VOL II, 2009, : 199 - +
  • [35] Integrated network analysis platform for protein-protein interactions
    Wu J.
    Vallenius T.
    Ovaska K.
    Westermarck J.
    Mäkelä T.P.
    Hautaniemi S.
    Nature Methods, 2009, 6 (1) : 75 - 77
  • [36] Computational approaches for predicting protein-protein interactions: A survey
    Yu J.
    Fotouhi F.
    Journal of Medical Systems, 2006, 30 (1) : 39 - 44
  • [37] Predicting disease genes using protein-protein interactions
    Oti, M.
    Snel, B.
    Huynen, M. A.
    Brunner, H. G.
    JOURNAL OF MEDICAL GENETICS, 2006, 43 (08) : 691 - 698
  • [38] Predicting protein-protein interactions using signature products
    Martin, S
    Roe, D
    Faulon, JL
    BIOINFORMATICS, 2005, 21 (02) : 218 - 226
  • [39] Predicting protein-protein interactions by a supervised learning classifier
    Huang, Y
    Frishman, D
    Muchnik, I
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2004, 28 (04) : 291 - 301
  • [40] Machine learning solutions for predicting protein-protein interactions
    Casadio, Rita
    Martelli, Pier Luigi
    Savojardo, Castrense
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (06)