Tapioca: a platform for predicting de novo protein-protein interactions in dynamic contexts

被引:6
|
作者
Reed, Tavis. J. [1 ,2 ,3 ]
Tyl, Matthew. D. [3 ]
Tadych, Alicja [1 ,2 ]
Troyanskaya, Olga. G. [1 ,2 ,4 ]
Cristea, Ileana. M. [3 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Carl Icahn Lab, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[3] Princeton Univ, Dept Mol Biol, Princeton, NJ 08540 USA
[4] Simons Fdn, Flatiron Inst, New York, NY 10010 USA
基金
美国国家科学基金会;
关键词
SARCOMA-ASSOCIATED HERPESVIRUS; NETWORKS; DISEASE; KINASE;
D O I
10.1038/s41592-024-02179-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Protein-protein interactions (PPIs) drive cellular processes and responses to environmental cues, reflecting the cellular state. Here we develop Tapioca, an ensemble machine learning framework for studying global PPIs in dynamic contexts. Tapioca predicts de novo interactions by integrating mass spectrometry interactome data from thermal/ion denaturation or cofractionation workflows with protein properties and tissue-specific functional networks. Focusing on the thermal proximity coaggregation method, we improved the experimental workflow. Finely tuned thermal denaturation afforded increased throughput, while cell lysis optimization enhanced protein detection from different subcellular compartments. The Tapioca workflow was next leveraged to investigate viral infection dynamics. Temporal PPIs were characterized during the reactivation from latency of the oncogenic Kaposi's sarcoma-associated herpesvirus. Together with functional assays, NUCKS was identified as a proviral hub protein, and a broader role was uncovered by integrating PPI networks from alpha- and betaherpesvirus infections. Altogether, Tapioca provides a web-accessible platform for predicting PPIs in dynamic contexts. Tapioca is an ensemble machine learning framework for studying protein-protein interactions (PPIs) that facilitates integration of curve-based dynamic PPI data from thermal proximity coaggregation, ion-based proteome-integrated solubility alteration or cofractionation mass spectrometry data with static interaction data to predict PPIs in dynamic contexts.
引用
收藏
页码:488 / 500
页数:41
相关论文
共 50 条
  • [1] Tapioca: a platform for predicting de novo protein–protein interactions in dynamic contexts
    Tavis. J. Reed
    Matthew. D. Tyl
    Alicja Tadych
    Olga. G. Troyanskaya
    Ileana. M. Cristea
    Nature Methods, 2024, 21 : 488 - 500
  • [2] Chromatin as a Dynamic Platform for Protein-Protein Interactions
    Fierz, Beat
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 77A - 77A
  • [3] Modulation and de novo design of protein-protein interactions
    不详
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2005, 22 (06): : 809 - 810
  • [4] Accurate de novo design of heterochiral protein-protein interactions
    Sun, Ke
    Li, Sicong
    Zheng, Bowen
    Zhu, Yanlei
    Wang, Tongyue
    Liang, Mingfu
    Yao, Yue
    Zhang, Kairan
    Zhang, Jizhong
    Li, Hongyong
    Han, Dongyang
    Zheng, Jishen
    Coventry, Brian
    Cao, Longxing
    Baker, David
    Liu, Lei
    Lu, Peilong
    CELL RESEARCH, 2024, 34 (12) : 846 - 858
  • [5] De novo design of protein-protein interaction using hydrophobic and electrostatic interactions
    Yagi, Sota
    Akanuma, Satoshi
    Yamagishi, Akihiko
    PROTEIN SCIENCE, 2015, 24 : 203 - 204
  • [6] Guiding Biomolecular Interactions in Cells Using de Novo Protein-Protein Interfaces
    Smith, Abigail J.
    Thomas, Franziska
    Shoemark, Deborah
    Woolfson, Derek N.
    Savery, Nigel J.
    ACS SYNTHETIC BIOLOGY, 2019, 8 (06): : 1284 - 1293
  • [7] Predicting global protein-protein interactions
    Rachel Brem
    Genome Biology, 1 (1)
  • [8] A de novo designed protein-protein interface
    Huang, Po-Ssu
    Love, John J.
    Mayo, Stephen L.
    PROTEIN SCIENCE, 2007, 16 (12) : 2770 - 2774
  • [9] Hyperplanes for predicting protein-protein interactions
    Nanni, L
    NEUROCOMPUTING, 2005, 69 (1-3) : 257 - 263
  • [10] De novo coiled-coil peptides as scaffolds for disrupting protein-protein interactions
    Fletcher, Jordan M.
    Horner, Katherine A.
    Bartlett, Gail J.
    Rhys, Guto G.
    Wilson, Andrew J.
    Woolfson, Derek N.
    CHEMICAL SCIENCE, 2018, 9 (39) : 7656 - 7665