Robust finite difference scheme for the non-linear generalized time-fractional diffusion equation with non-smooth solution

被引:4
作者
Kedia, Nikki [1 ]
Alikhanov, Anatoly A. [2 ]
Singh, Vineet Kumar [1 ]
机构
[1] Banaras Hindu Univ, Indian Inst Technol, Dept Math Sci, Varanasi, India
[2] North Caucasus Fed Univ, North Caucasus Ctr Math Res, Stavropol, Russia
基金
俄罗斯科学基金会;
关键词
Fractional derivative with generalized memory; kernel; Non-smooth solution; Weight function; Non-linear; Generalized L1 scheme; Convergence and stability; NUMERICAL APPROXIMATION; SUBDIFFUSION; CONVERGENCE; MESHES;
D O I
10.1016/j.matcom.2023.12.034
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The present paper aims to develop a stable multistep numerical scheme for the non-linear generalized time -fractional diffusion equations (GTFDEs) with non -smooth solutions. Mesh grading technique is used to discretize the temporal direction, which results in 2 - alpha order of convergence (0 < alpha < 1). The spatial direction is discretized using a second order difference operator and the non-linear term is approximated using Taylor's series. Theoretical stability and convergence analysis is established in the L-2-norm. Moreover, some random noise perturbations are added to investigate the numerical stability of the developed scheme. Finally, numerical simulations are performed on three test examples to verify the robustness and efficiency of the scheme.
引用
收藏
页码:337 / 354
页数:18
相关论文
共 41 条
[1]  
Alikhanov A., 2022, Mathematics and its Applications in New Computer Systems: MANCS-2021. Lecture Notes in Networks and Systems (424), P515, DOI 10.1007/978-3-030-97020-8_47
[2]   A high-order L2 type difference scheme for the time-fractional diffusion equation [J].
Alikhanov, Anatoly A. ;
Huang, Chengming .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 411
[3]   A Time-Fractional Diffusion Equation with Generalized Memory Kernel in Differential and Difference Settings with Smooth Solutions [J].
Alikhanov, Anatoly A. .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) :647-660
[4]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[5]   Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems [J].
Baleanu, D. ;
Bhrawy, A. H. ;
Taha, T. M. .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[6]   Fractional Hamilton formalism within Caputo's derivative [J].
Baleanu, Dumitru ;
Agrawal, Om. P. .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) :1087-1092
[7]  
Caputo M., 1969, ELASTICITA DISSIPAZI
[8]   Stochastic volatility for Levy processes [J].
Carr, P ;
Geman, H ;
Madan, DB ;
Yor, M .
MATHEMATICAL FINANCE, 2003, 13 (03) :345-382
[9]   Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation [J].
Chen, Chang-ming ;
Liu, F. ;
Burrage, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) :754-769
[10]  
Chen CM, 2012, MATH COMPUT, V81, P345, DOI 10.1090/S0025-5718-2011-02447-6