Deep learning for automated segmentation in radiotherapy: a narrative review

被引:12
作者
Bibault, Jean-Emmanuel [1 ,2 ]
Giraud, Paul [2 ,3 ]
机构
[1] Univ Paris Cite, Georges Pompidou European Hosp, Assistance Publ Hop Paris, Dept Radiat Oncol, F-75015 Paris, France
[2] INSERM, Ctr Rech Cordeliers, UMR 1138, F-75006 Paris, France
[3] Paris Sorbonne Univ, Pitie Salpetriere Hosp, Assistance Publ Hop Paris, Radiat Oncol Dept, F-75013 Paris, France
关键词
machine learning; deep learning; radiation oncology; segmentation; contouring; delineation; CLINICAL TARGET VOLUME; CONVOLUTIONAL NEURAL-NETWORK; AUTO-SEGMENTATION; TOMOGRAPHY IMAGES; CANCER; ORGANS; RISK; DELINEATION; VALIDATION; HEAD;
D O I
10.1093/bjr/tqad018
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The segmentation of organs and structures is a critical component of radiation therapy planning, with manual segmentation being a laborious and time-consuming task. Interobserver variability can also impact the outcomes of radiation therapy. Deep neural networks have recently gained attention for their ability to automate segmentation tasks, with convolutional neural networks (CNNs) being a popular approach. This article provides a descriptive review of the literature on deep learning (DL) techniques for segmentation in radiation therapy planning. This review focuses on five clinical sub-sites and finds that U-net is the most commonly used CNN architecture. The studies using DL for image segmentation were included in brain, head and neck, lung, abdominal, and pelvic cancers. The majority of DL segmentation articles in radiation therapy planning have concentrated on normal tissue structures. N-fold cross-validation was commonly employed, without external validation. This research area is expanding quickly, and standardization of metrics and independent validation are critical to benchmarking and comparing proposed methods.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 52 条
[1]   Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer [J].
Ahn, Sang Hee ;
Yeo, Adam Unjin ;
Kim, Kwang Hyeon ;
Kim, Chankyu ;
Goh, Youngmoon ;
Cho, Shinhaeng ;
Lee, Se Byeong ;
Lim, Young Kyung ;
Kim, Haksoo ;
Shin, Dongho ;
Kim, Taeyoon ;
Kim, Tae Hyun ;
Youn, Sang Hee ;
Oh, Eun Sang ;
Jeong, Jong Hwi .
RADIATION ONCOLOGY, 2019, 14 (01) :1-13
[2]   Fully automated organ segmentation in male pelvic CT images [J].
Balagopal, Anjali ;
Kazemifar, Samaneh ;
Dan Nguyen ;
Lin, Mu-Han ;
Hannan, Raquibul ;
Owrangi, Amir ;
Jiang, Steve .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (24)
[3]   Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images [J].
Ben Naceur, Mostefa ;
Saouli, Rachida ;
Akil, Mohamed ;
Kachouri, Rostom .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 166 :39-49
[4]   Deep Learning Improved Clinical Target Volume Contouring Quality and Efficiency for Postoperative Radiation Therapy in Non-small Cell Lung Cancer [J].
Bi, Nan ;
Wang, Jingbo ;
Zhang, Tao ;
Chen, Xinyuan ;
Xia, Wenlong ;
Miao, Junjie ;
Xu, Kunpeng ;
Wu, Linfang ;
Fan, Quanrong ;
Wang, Luhua ;
Li, Yexiong ;
Zhou, Zongmei ;
Dai, Jianrong .
FRONTIERS IN ONCOLOGY, 2019, 9
[5]   Auto-delineation of oropharyngeal clinical target volumes using 3D convolutional neural networks [J].
Cardenas, Carlos E. ;
Anderson, Brian M. ;
Aristophanous, Michalis ;
Yan, Jinzhong ;
Rhee, Dong Joo ;
McCarroll, Rachel E. ;
Mohamed, Abdallah S. R. ;
Kamal, Mona ;
Elgohari, Baher A. ;
Elhalawani, Hesham M. ;
Fuller, Clifton D. ;
Rao, Arvind ;
Garden, Adam S. ;
Court, Laurence E. .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (21)
[6]   Deep Learning Algorithm for Auto-Delineation of High-Risk Oropharyngeal Clinical Target Volumes With Built-In Dice Similarity Coefficient Parameter Optimization Function [J].
Cardenas, Carlos E. ;
McCarroll, Rachel E. ;
Court, Laurence E. ;
Elgohari, Baher A. ;
Elhalawani, Hesham ;
Fuller, Clifton D. ;
Kamal, Mona J. ;
Meheissen, Mohamed A. M. ;
Mohamed, Abdallah S. R. ;
Rao, Arvind ;
Williams, Bowman ;
Wong, Andrew ;
Yang, Jinzhong ;
Aristophanous, Michalis .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 101 (02) :468-478
[7]   A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning [J].
Chan, Jason W. ;
Kearney, Vasant ;
Haaf, Samuel ;
Wu, Susan ;
Bogdanov, Madeleine ;
Reddick, Mariah ;
Dixit, Nayha ;
Sudhyadhom, Atchar ;
Chen, Josephine ;
Yom, Sue S. ;
Solberg, Timothy D. .
MEDICAL PHYSICS, 2019, 46 (05) :2204-2213
[8]   Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network [J].
Charron, Odelin ;
Lallement, Alex ;
Jarnet, Delphine ;
Noblet, Vincent ;
Clavier, Jean-Baptiste ;
Meyer, Philippe .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 95 :43-54
[9]   Brain Tumor Segmentation Based on Improved Convolutional Neural Network in Combination with Non-quantifiable Local Texture Feature [J].
Deng, Wu ;
Shi, Qinke ;
Luo, Kai ;
Yang, Yi ;
Ning, Ning .
JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (06)
[10]   A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy [J].
Doolan, Paul J. J. ;
Charalambous, Stefanie ;
Roussakis, Yiannis ;
Leczynski, Agnes ;
Peratikou, Mary ;
Benjamin, Melka ;
Ferentinos, Konstantinos ;
Strouthos, Iosif ;
Zamboglou, Constantinos ;
Karagiannis, Efstratios .
FRONTIERS IN ONCOLOGY, 2023, 13