A Multi-Qubit Quantum Gate Using the Zeno Effect

被引:0
作者
Lewalle, Philippe [1 ,2 ]
Martin, Leigh S. [1 ,3 ]
Flurin, Emmanuel [1 ,3 ]
Zhang, Song [2 ]
Blumenthal, Eliya [4 ]
Hacohen-Gourgy, Shay [4 ]
Burgarth, Daniel [5 ]
Whaley, K. Birgitta [1 ,2 ]
机构
[1] Berkeley Ctr Quantum Informat & Computat, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[5] Macquarie Univ, Ctr Engn Quantum Syst, N Ryde, NSW 2109, Australia
来源
QUANTUM | 2023年 / 7卷
关键词
ENTANGLEMENT; DECOHERENCE;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Zeno effect, in which repeated observation freezes the dynamics of a quantum system, stands as an iconic oddity of quantum mechanics. When a measurement is unable to distinguish between states in a subspace, the dynamics within that subspace can be profoundly altered, leading to non-trivial behavior. Here we show that such a measurement can turn a non-interacting system with only single-qubit control into a two- or multi-qubit entangling gate, which we call a Zeno gate. The gate works by imparting a geometric phase on the system, conditioned on it lying within a particular nonlocal subspace. We derive simple closed-form expressions for the gate fidelity under a number of non-idealities and show that the gate is viable for implementation in circuit and cavity QED systems. More specifically, we illustrate the functioning of the gate via dispersive readout in both the Markovian and non-Markovian readout regimes, and derive conditions for longitudinal readout to ideally realize the gate.
引用
收藏
页数:32
相关论文
共 71 条
  • [1] Efficient high-fidelity quantum computation using matter qubits and linear optics
    Barrett, SD
    Kok, P
    [J]. PHYSICAL REVIEW A, 2005, 71 (06):
  • [2] Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
    Blais, A
    Huang, RS
    Wallraff, A
    Girvin, SM
    Schoelkopf, RJ
    [J]. PHYSICAL REVIEW A, 2004, 69 (06): : 062320 - 1
  • [3] Circuit quantum electrodynamics
    Blais, Alexandre
    Grimsmo, Arne L.
    Girvin, S. M.
    Wallraffe, Andreas
    [J]. REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
  • [4] Demonstration of universal control between non-interacting qubits using the Quantum Zeno effect
    Blumenthal, E.
    Mor, C.
    Diringer, A. A.
    Martin, L. S.
    Lewalle, P.
    Burgarth, D.
    Whaley, K. B.
    Hacohen-Gourgy, S.
    [J]. NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [5] Generalized Adiabatic Theorem and Strong-Coupling Limits
    Burgarth, Daniel
    Facchi, Paolo
    Nakazato, Hiromichi
    Pascazio, Saverio
    Yuasa, Kazuya
    [J]. QUANTUM, 2019, 3
  • [6] Non-Abelian phases from quantum Zeno dynamics
    Burgarth, Daniel
    Facchi, Paolo
    Giovannetti, Vittorio
    Nakazato, Hiromichi
    Pascazio, Saverio
    Yuasa, Kazuya
    [J]. PHYSICAL REVIEW A, 2013, 88 (04):
  • [7] Exponential rise of dynamical complexity in quantum computing through projections
    Burgarth, Daniel Klaus
    Facchi, Paolo
    Giovannetti, Vittorio
    Nakazato, Hiromichi
    Pascazio, Saverio
    Yuasa, Kazuya
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [8] Quantum collision models: Open system dynamics from repeated interactions
    Ciccarello, Francesco
    Lorenzo, Salvatore
    Giovannetti, Vittorio
    Palma, G. Massimo
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2022, 954 : 1 - 70
  • [9] Introduction to quantum noise, measurement, and amplification
    Clerk, A. A.
    Devoret, M. H.
    Girvin, S. M.
    Marquardt, Florian
    Schoelkopf, R. J.
    [J]. REVIEWS OF MODERN PHYSICS, 2010, 82 (02) : 1155 - 1208
  • [10] Optimized pulse shapes for a resonator-induced PHASE gate
    Cross, Andrew W.
    Gambetta, Jay M.
    [J]. PHYSICAL REVIEW A, 2015, 91 (03):