Linking genotypic and phenotypic changes in the E. coli long-term evolution experiment using metabolomics

被引:2
作者
Favate, John S. [1 ,2 ]
Skalenko, Kyle S. [1 ,3 ]
Chiles, Eric [4 ]
Su, Xiaoyang [4 ]
Yadavalli, Srujana Samhita [1 ,3 ]
Shah, Premal [1 ,2 ]
机构
[1] Rutgers State Univ, Dept Genet, Piscataway, NJ 08854 USA
[2] Human Genet Inst New Jersey, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Waksman Inst, Piscataway, NJ USA
[4] Canc Inst New Jersey, New Brunswick, NJ USA
基金
美国国家卫生研究院;
关键词
adaptation; metabolomics; LTEE; bacteria; E; coli; ESCHERICHIA-COLI; PARALLEL CHANGES; MOLECULAR EVOLUTION; GENOME EVOLUTION; KEY INNOVATION; ADAPTATION; DYNAMICS; BIOSYNTHESIS; BIOCHEMISTRY; POPULATIONS;
D O I
10.7554/eLife.87039
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Changes in an organism's environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism's metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the long-term evolution experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype-phenotype map for this experimental system.
引用
收藏
页数:15
相关论文
共 59 条
[1]  
Begley TP, 2001, VITAM HORM, V61, P103
[2]   Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli [J].
Blount, Zachary D. ;
Borland, Christina Z. ;
Lenski, Richard E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (23) :7899-7906
[3]   Genomic analysis of a key innovation in an experimental Escherichia coli population [J].
Blount, Zachary D. ;
Barrick, Jeffrey E. ;
Davidson, Carla J. ;
Lenski, Richard E. .
NATURE, 2012, 489 (7417) :513-+
[4]   NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus [J].
Canto, Carles ;
Menzies, Keir J. ;
Auwerx, Johan .
CELL METABOLISM, 2015, 22 (01) :31-53
[5]  
Charlier D., 2004, EcoSal Plus, V1, DOI DOI 10.1128/ECOSALPLUS.3.6.1.10
[6]   Evolutionary dynamics of natural product biosynthesis in bacteria [J].
Chevrette, Marc G. ;
Gutierrez-Garcia, Karina ;
Selem-Mojica, Nelly ;
Aguilar-Martinez, Cesar ;
Yanez-Olvera, Alan ;
Ramos-Aboites, Hilda E. ;
Hoskisson, Paul A. ;
Barona-Gomez, Francisco .
NATURAL PRODUCT REPORTS, 2020, 37 (04) :566-599
[7]  
CIONI M, 1981, COMP BIOCHEM PHYS B, V70, P1, DOI 10.1016/0305-0491(81)90118-8
[8]   Parallel changes in qene expression after 20,000 generations of evolution in Escherichia coli [J].
Cooper, TF ;
Rozen, DE ;
Lenski, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (03) :1072-1077
[9]   Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B [J].
Cooper, VS ;
Schneider, D ;
Blot, M ;
Lenski, RE .
JOURNAL OF BACTERIOLOGY, 2001, 183 (09) :2834-2841
[10]  
DOBZHANSKY T, 1964, AM ZOOL, V4, P443