Weakly supervised salient object detection via image category annotation

被引:1
|
作者
Zhang, Ruoqi [1 ]
Huang, Xiaoming [1 ]
Zhu, Qiang [1 ,2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Comp Sch, Beijing 100192, Peoples R China
[2] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310013, Peoples R China
关键词
weakly supervised; salient object detection; saliency detection; image category; annotation; deep learning; SEGMENTATION; NETWORK;
D O I
10.3934/mbe.2023945
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rapid development of deep learning has made a great progress in salient object detection task. Fully supervised methods need a large number of pixel-level annotations. To avoid laborious and consuming annotation, weakly supervised methods consider low-cost annotations such as category, bounding-box, scribble, etc. Due to simple annotation and existing large-scale classification datasets, the category annotation based methods have received more attention while still suffering from inaccurate detection. In this work, we proposed one weakly supervised method with category annotation. First, we proposed one coarse object location network (COLN) to roughly locate the object of an image with category annotation. Second, we refined the coarse object location to generate pixel-level pseudo labels and proposed one quality check strategy to select high quality pseudo labels. To this end, we studied COLN twice followed by refinement to obtain a pseudo-labels pair and calculated the consistency of pseudo-label pairs to select high quality labels. Third, we proposed one multi-decoder neural network (MDN) for saliency detection supervised by pseudo-label pairs. The loss of each decoder and between decoders are both considered. Last but not least, we proposed one pseudo-labels update strategy to iteratively optimize pseudo-labels and saliency detection models. Performance evaluation on four public datasets shows that our method outperforms other image category annotation based work.
引用
收藏
页码:21359 / 21381
页数:23
相关论文
共 50 条
  • [21] WBNet: Weakly-supervised salient object detection via scribble and pseudo-background priors
    Wang, Yi
    Wang, Ruili
    He, Xiangjian
    Lin, Chi
    Wang, Tianzhu
    Jia, Qi
    Fan, Xin
    PATTERN RECOGNITION, 2024, 154
  • [22] WUSL-SOD: Joint weakly supervised, unsupervised and supervised learning for salient object detection
    Liu, Yan
    Zhang, Yunzhou
    Wang, Zhenyu
    Ma, Rong
    Qiu, Feng
    Coleman, Sonya
    Kerr, Dermot
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (21) : 15837 - 15856
  • [23] DNA: Deeply Supervised Nonlinear Aggregation for Salient Object Detection
    Liu, Yun
    Cheng, Ming-Ming
    Zhang, Xin-Yu
    Nie, Guang-Yu
    Wang, Meng
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 6131 - 6142
  • [24] Scribble-based boundary-aware network for weakly supervised salient object detection in remote sensing images
    Huang, Zhou
    Xiang, Tian-Zhu
    Chen, Huai-Xin
    Dai, Hang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 191 : 290 - 301
  • [25] Salient Object Detection via Integrity Learning
    Zhuge, Mingchen
    Fan, Deng-Ping
    Liu, Nian
    Zhang, Dingwen
    Xu, Dong
    Shao, Ling
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3738 - 3752
  • [26] Weakly Supervised Foreground Object Detection Network Using Background Model Image
    Kim, Jae-Yeul
    Ha, Jong-Eun
    IEEE ACCESS, 2022, 10 : 105726 - 105733
  • [27] Weakly-supervised salient object detection with the multi-scale progressive network
    Liu X.
    Guo J.
    Zheng S.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 48 - 57
  • [28] Webly-supervised learning for salient object detection
    Luo, Ao
    Li, Xin
    Yang, Fan
    Jiao, Zhicheng
    Cheng, Hong
    PATTERN RECOGNITION, 2020, 103
  • [29] SSFam: Scribble Supervised Salient Object Detection Family
    Liu, Zhengyi
    Deng, Sheng
    Wang, Xinrui
    Wang, Linbo
    Fang, Xianyong
    Tang, Bin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1988 - 2000
  • [30] Multidimensional Exploration of Segment Anything Model for Weakly Supervised Video Salient Object Detection
    Xu, Binwei
    Jiang, Qiuping
    Zhao, Xing
    Lu, Chenyang
    Liang, Haoran
    Liang, Ronghua
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (04) : 2987 - 2998