Time-restricted feeding alleviates metabolic implications of circadian disruption by regulating gut hormone release and brown fat activation

被引:0
作者
Chi, Sensen [1 ]
Zhang, Taoyuan [1 ]
Pan, Yu [1 ]
Niu, Shenghui [2 ,3 ]
Zhao, Lin [2 ,3 ]
Gu, Zili [4 ]
Liu, Qi [5 ]
Jin, Aishun [1 ]
Wang, Wang [1 ]
Tan, Shuai [1 ,5 ]
机构
[1] Chongqing Med Univ, Sch Basic Med Sci, Dept Immunol, Chongqing 400010, Peoples R China
[2] Sichuan Univ, West China Univ Hosp 2, Dept Paediat, Key Lab Birth Defects & Related Dis Women & Childr, Chengdu 610041, Peoples R China
[3] Sichuan Univ, Collaborat Innovat Ctr Biotherapy, Chengdu 610041, Peoples R China
[4] Leiden Univ, Dept Radiol, Med Ctr, NL-2333 ZA Leiden, Netherlands
[5] Univ Texas Southwestern Med Ctr, Dept Internal Med, Dallas, TX 75390 USA
关键词
FOOD-INTAKE; GLUCOSE-METABOLISM; SHIFT WORK; LIGHT; NIGHT; PHYSIOLOGY; HEALTH; IMPACT; CLOCK; SLEEP;
D O I
10.1039/d3fo02063k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Individuals with rotating and night shift work are highly susceptible to developing metabolic disorders such as obesity and diabetes. This is primarily attributed to disruptions in the circadian rhythms caused by activities and irregular eating habits. Time-restricted feeding (tRF) limits the daily eating schedules and has been demonstrated to markedly improve several metabolic disorders. Although an intricate relationship exists between tRF and circadian rhythms, the underlying specific mechanism remains elusive. We used a sleep disruption device for activity interference and established a model of circadian rhythm disorder in mice with different genetic backgrounds. We found that circadian rhythm disruption led to abnormal hormone secretion in the gut and elevated insulin resistance. tRF improved metabolic abnormalities caused by circadian rhythm disruption, primarily by restoring the gut hormone secretion rhythm and activating brown fat thermogenesis. The crucial function of brown fat in tRF was confirmed using a mouse model with brown fat removal. We demonstrated that chenodeoxycholic acid (CDCA) effectively improved circadian rhythm disruption-induced metabolic disorders by restoring brown fat activation. Our findings demonstrate the potential benefits of CDCA in reversing metabolic disadvantages associated with irregular circadian rhythms. Scheme of the study. Time-restricted feeding may alleviate metabolic implications caused by circadian disruption through regulating the circadian of gut hormone release and activating thermogenesis from brown fat.
引用
收藏
页码:10443 / 10458
页数:16
相关论文
共 50 条
[1]   Circadian Timing of Food Intake Contributes to Weight Gain [J].
Arble, Deanna M. ;
Bass, Joseph ;
Laposky, Aaron D. ;
Vitaterna, Martha H. ;
Turek, Fred W. .
OBESITY, 2009, 17 (11) :2100-2102
[2]   The core clock gene, Bmal1, and its downstream target, the SNARE regulatory protein secretagogin, are necessary for circadian secretion of glucagon-like peptide-1 [J].
Biancolin, Andrew D. ;
Martchenko, Alexandre ;
Mitova, Emilia ;
Gurges, Patrick ;
Michalchyshyn, Everan ;
Chalmers, Jennifer A. ;
Doria, Alessandro ;
Mychaleckyj, Josyf C. ;
Adriaenssens, Alice E. ;
Reimann, Frank ;
Gribble, Fiona M. ;
Gil-Lozano, Manuel ;
Cox, Brian J. ;
Brubaker, Patricia L. .
MOLECULAR METABOLISM, 2020, 31 :124-137
[3]   The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity [J].
Broeders, Evie P. M. ;
Nascimento, Emmani B. M. ;
Havekes, Bas ;
Brans, Boudewijn ;
Roumans, Kay H. M. ;
Tailleux, Anne ;
Schaart, Gert ;
Kouach, Mostafa ;
Charton, Julie ;
Deprez, Benoit ;
Bouvy, Nicole D. ;
Mottaghy, Felix ;
Staels, Bart ;
Lichtenbelt, Wouter D. van Marken ;
Schrauwen, Patrick .
CELL METABOLISM, 2015, 22 (03) :418-426
[4]   The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock [J].
Brooks, John F. ;
Behrendt, Cassie L. ;
Ruhn, Kelly A. ;
Lee, Syann ;
Raj, Prithvi ;
Takahashi, Joseph S. ;
Hooper, Lora, V .
CELL, 2021, 184 (16) :4154-+
[5]   Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock [J].
Chaix, Amandine ;
Lin, Terry ;
Le, Hiep D. ;
Chang, Max W. ;
Panda, Satchidananda .
CELL METABOLISM, 2019, 29 (02) :303-+
[6]   Daytime eating prevents internal circadian misalignment and glucose intolerance in night work [J].
Chellappa, Sarah L. ;
Qian, Jingyi ;
Vujovic, Nina ;
Morris, Christopher J. ;
Nedeltcheva, Arlet ;
Nguyen, Hoa ;
Rahman, Nishath ;
Heng, Su Wei ;
Kelly, Lauren ;
Kerlin-Monteiro, Kayla ;
Srivastav, Suhina ;
Wang, Wei ;
Aeschbach, Daniel ;
Czeisler, Charles A. ;
Shea, Steven A. ;
Adler, Gail K. ;
Garaulet, Marta ;
Scheer, Frank A. J. L. .
SCIENCE ADVANCES, 2021, 7 (49)
[7]   SnapShot: Hormones of the Gastrointestinal Tract [J].
Coate, Katie C. ;
Kliewer, Steven A. ;
Mangelsdorf, David J. .
CELL, 2014, 159 (06) :1478-+
[8]   Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus [J].
Damiola, F ;
Le Minh, N ;
Preitner, N ;
Kornmann, B ;
Fleury-Olela, F ;
Schibler, U .
GENES & DEVELOPMENT, 2000, 14 (23) :2950-2961
[9]   Association between prehypertension, metabolic and inflammatory markers, decreased adiponectin and enhanced insulinemia in obese subjects [J].
de Almeida, Amanda Roberta ;
Monte-Alegre, Sarah ;
Zanini, Michele Bianca ;
Souza, Aglecio Luiz ;
Etchebehere, Mauricio ;
Rocha Gontijo, Jose Antonio .
NUTRITION & METABOLISM, 2014, 11
[10]   Atlas of Circadian Metabolism Reveals System-wide Coordination and Communication between Clocks [J].
Dyar, Kenneth A. ;
Lutter, Dominik ;
Artati, Anna ;
Ceglia, Nicholas J. ;
Liu, Yu ;
Armenta, Danny ;
Jastroch, Martin ;
Schneider, Sandra ;
de Mateo, Sara ;
Cervantes, Marlene ;
Abbondante, Serena ;
Tognini, Paola ;
Orozco-Solis, Ricardo ;
Kinouchi, Kenichiro ;
Wang, Christina ;
Swerdloff, Ronald ;
Nadeef, Seba ;
Masri, Selma ;
Magistretti, Pierre ;
Orlando, Valerio ;
Borrelli, Emiliana ;
Uhlenhaut, N. Henriette ;
Baldi, Pierre ;
Adamski, Jerzy ;
Tschoep, Matthias H. ;
Eckel-Mahan, Kristin ;
Sassone-Corsi, Paolo .
CELL, 2018, 174 (06) :1571-+