AutoFocusFormer: Image Segmentation off the Grid

被引:7
作者
Chen Ziwen [1 ]
Patnaik, Kaushik [2 ]
Zhai, Shuangfei [2 ]
Wan, Alvin [2 ]
Ren, Zhile [2 ]
Schwing, Alex [2 ]
Colburn, Alex [2 ]
Li Fuxin [1 ,2 ]
机构
[1] Oregon State Univ, Corvallis, OR 97331 USA
[2] Apple Inc, Cupertino, CA USA
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
关键词
D O I
10.1109/CVPR52729.2023.01748
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real world images often have highly imbalanced content density. Some areas are very uniform, e.g., large patches of blue sky, while other areas are scattered with many small objects. Yet, the commonly used successive grid downsampling strategy in convolutional deep networks treats all areas equally. Hence, small objects are represented in very few spatial locations, leading to worse results in tasks such as segmentation. Intuitively, retaining more pixels representing small objects during downsampling helps to preserve important information. To achieve this, we propose AutoFocusFormer (AFF), a local-attention transformer image recognition backbone, which performs adaptive downsampling by learning to retain the most important pixels for the task. Since adaptive downsampling generates a set of pixels irregularly distributed on the image plane, we abandon the classic grid structure. Instead, we develop a novel point-based local attention block, facilitated by a balanced clustering module and a learnable neighborhood merging module, which yields representations for our point-based versions of state-of-the-art segmentation heads. Experiments show that our AutoFocusFormer (AFF) improves significantly over baseline models of similar sizes.
引用
收藏
页码:18227 / 18236
页数:10
相关论文
共 49 条
[1]  
[Anonymous], 2022, P IEEE CVF C COMP VI, DOI DOI 10.1109/ICPSASIA55496.2022.9949880
[2]   Scalable clustering algorithms with balancing constraints [J].
Banerjee, Arindam ;
Ghosh, Joydeep .
DATA MINING AND KNOWLEDGE DISCOVERY, 2006, 13 (03) :365-395
[3]   Masked-attention Mask Transformer for Universal Image Segmentation [J].
Cheng, Bowen ;
Misra, Ishan ;
Schwing, Alexander G. ;
Kirillov, Alexander ;
Girdhar, Rohit .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1280-1289
[4]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[5]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[6]  
Dosovitskiy Alexey., 2021, PROC INT C LEARN REP, P2021
[7]  
Du Xianzhi, 2021, ARXIV210700057
[8]   Multiscale Vision Transformers [J].
Fan, Haoqi ;
Xiong, Bo ;
Mangalam, Karttikeya ;
Li, Yanghao ;
Yan, Zhicheng ;
Malik, Jitendra ;
Feichtenhofer, Christoph .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :6804-6815
[9]  
Fayyaz Mohsen, 2022, P EUR C COMP VIS ECC
[10]   LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference [J].
Graham, Ben ;
El-Nouby, Alaaeldin ;
Touvron, Hugo ;
Stock, Pierre ;
Joulin, Armand ;
Jegou, Herve ;
Douze, Matthijs .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :12239-12249