Stabilization of the chemostat system with mutations and application to microbial production

被引:1
|
作者
Bayen, Terence [1 ,4 ]
Coville, Jerome [2 ]
Mairet, Francis [3 ]
机构
[1] Avignon Univ, Lab Math Avignon EA 2151, Avignon, France
[2] INRAE, UR 546 Biostat & Proc Spatiaux, Domaine St Paul Site Agroparc, Avignon, France
[3] Ifremer, PHYSALG, PHYTOX, Nantes, France
[4] Avignon Univ, Lab Math Avignon EA 2151, F-84018 Avignon, France
来源
关键词
chemostat system; dynamical system; feedback control; global stabilization; optimal control; Pontryagin maximum principle; FEEDBACK; OPTIMIZATION; COEXISTENCE; STABILITY; MODEL;
D O I
10.1002/oca.3041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we consider the chemostat system with n & GE;1$$ n\ge 1 $$ species, one limiting substrate, and mutations between species. Our objective is to globally stabilize the corresponding dynamical system around a desired equilibrium point. Doing so, we introduce auxostat feedback controls which are controllers allowing the regulation of the substrate concentration. We prove that such feedback controls globally stabilize the resulting closed-loop system near the desired equilibrium point. This result is obtained by combining the theory of asymptotically autonomous systems and an explicit computation of solutions to the limit system. The performance of such controllers is illustrated on an optimal control problem of Lagrange type which consists in maximizing the production of species over a given time period w.r.t. the dilution rate chosen as control variable.
引用
收藏
页码:3342 / 3360
页数:19
相关论文
共 50 条
  • [41] MICROBIAL VIABILITY AND STEADY-STATE CHEMOSTAT CULTURE
    VEILLEUX, BG
    EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1980, 9 (03): : 165 - 171
  • [42] EFFECT OF SODIUM ARSENATE ON MICROBIAL-GROWTH IN A CHEMOSTAT
    SHARIATPANAHI, M
    ANDERSON, AC
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART B-PESTICIDES FOOD CONTAMINANTS AND AGRICULTURAL WASTES, 1981, 16 (03) : 283 - 291
  • [43] Global stability for a model of competition in the chemostat with microbial inputs
    Robledo, Gonzalo
    Grognard, Frederic
    Gouze, Jean-Luc
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) : 582 - 598
  • [44] Modeling microbial metabolic trade-offs in a chemostat
    Li, Zhiyuan
    Liu, Bo
    Li, Sophia Hsin-Jung
    King, Christopher G.
    Gitai, Zemer
    Wingreen, Ned S.
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (08)
  • [45] ON THE COEXISTENCE OF COMPETING MICROBIAL SPECIES IN A CHEMOSTAT UNDER CYCLING
    PAVLOU, S
    KEVREKIDIS, IG
    LYBERATOS, G
    BIOTECHNOLOGY AND BIOENGINEERING, 1990, 35 (03) : 224 - 232
  • [46] An Algorithm for Maximizing the Biogas Production in a Chemostat
    Haddon, Antoine
    Hermosilla, Cristopher
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 182 (03) : 1150 - 1170
  • [47] An Algorithm for Maximizing the Biogas Production in a Chemostat
    Antoine Haddon
    Cristopher Hermosilla
    Journal of Optimization Theory and Applications, 2019, 182 : 1150 - 1170
  • [48] Stabilization in a chemostat with sampled and delayed measurements and uncertain growth functions
    Mazenc, Frederic
    Harmand, Jerome
    Malisoff, Michael
    AUTOMATICA, 2017, 78 : 241 - 249
  • [49] Noise-like pulses: stabilization, production, and application
    Kobtsev S.
    Komarov A.
    Journal of the Optical Society of America B: Optical Physics, 2024, 41 (05) : 1116 - 1127
  • [50] Stabilization of a chemostat model with Haldane growth functions and a delay in the measurements
    Mazenc, Frederic
    Malisoff, Michael
    AUTOMATICA, 2010, 46 (09) : 1428 - 1436