Stabilizing Zn Metal Anode Through Regulation of Zn Ion Transfer and Interfacial Behavior with a Fast Ion Conductor Protective Layer

被引:45
|
作者
Guo, Na [1 ]
Peng, Zhi [1 ]
Huo, Wenjie [1 ]
Li, Yuehua [1 ]
Liu, Shude [2 ,3 ,4 ]
Kang, Ling [5 ]
Wu, Xianwen [6 ]
Dai, Lei [1 ]
Wang, Ling [1 ]
Jun, Seong Chan [4 ]
He, Zhangxing [1 ]
机构
[1] North China Univ Sci & Technol, Sch Chem Engn, Tangshan 063009, Peoples R China
[2] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China
[3] Natl Inst Mat Sci, JST ERATO Yamauchi Mat Space Tecton Project, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[4] Yonsei Univ, Sch Mech Engn, Seoul 03722, South Korea
[5] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
[6] Jishou Univ, Sch Chem & Chem Engn, Jishou 416000, Hunan, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
aqueous Zn-ion batteries; dendrite; Na3V2(PO4)(3); protection layers; LONG-LIFE; CATHODE MATERIAL; RECENT PROGRESS; DENDRITE-FREE; PERFORMANCE; BATTERIES; NA3V2(PO4)(3); ELECTROLYTE; COMPOSITE;
D O I
10.1002/smll.202303963
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous Zn-ion batteries (AZIBs) attract intensive attention owing to their environmental friendliness, cost-effectiveness, innate safety, and high specific capacity. However, the practical applications of AZIBs are hindered by several adverse phenomena, including corrosion, Zn dendrites, and hydrogen evolution. Herein, a Zn anode decorated with a 3D porous-structured Na3V2(PO4)(3) (NVP@Zn) is obtained, where the NVP reconstruct the electrolyte/anode interface. The resulting NVP@Zn anode can provide a large quantity of fast and stable channels, facilitating enhanced Zn ion deposition kinetics and regulating the Zn ions transport process through the ion confinement effect. The NASICON-type NVP protective layer promote the desolvation process due to its nanopore structure, thus effectively avoiding side reactions. Theoretical calculations indicate that the NVP@Zn electrode has a higher Zn ion binding energy and a higher migration barrier, which demonstrates that NVP protective layer can enhance Zn ion deposition kinetics and prevent the unfettered 2D diffusion of Zn ions. Therefore, the results show that NVP@Zn/MnO2 full cell can maintain a high specific discharge capacity of 168 mAh g(-1) and a high-capacity retention rate of 74.6% after cycling. The extraordinary results obtained with this strategy have confirmed the promising applications of NVP in high-performance AZIBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Stable dendrite-free Zn anode with Janus MXene-Ag interfacial bifunctional protective layer for aqueous zinc-ion batteries
    Liu, Zhu
    Li, Xuanyang
    Li, Zhiheng
    Ma, Longli
    Wang, Yuan
    Ye, Chuming
    Ye, Mingxin
    Shen, Jianfeng
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [22] Achieving Stable Zinc Metal Anode Via Polyaniline Interface Regulation of Zn Ion Flux and Desolvation
    Li, Bin
    Liu, Shude
    Geng, Yifei
    Mao, Caiwang
    Dai, Lei
    Wang, Ling
    Jun, Seong Chan
    Lu, Bingan
    He, Zhangxing
    Zhou, Jiang
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (05)
  • [23] Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries
    Hong, Lin
    Wu, Xiuming
    Ma, Chao
    Huang, Wei
    Zhou, Yongfeng
    Wang, Kai-Xue
    Chen, Jie-Sheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (31) : 16814 - 16823
  • [24] A Heteroanionic Zinc Ion Conductor for Dendrite-Free Zn Metal Anodes
    Zhao, Siwei
    Zhang, Yujing
    Li, Jidao
    Qi, Limin
    Tang, Yuxin
    Zhu, Jia
    Zhi, Jian
    Huang, Fuqiang
    ADVANCED MATERIALS, 2023, 35 (18)
  • [25] Xonotlite nanowire interfacial layer with zincophilic behavior and ion confinement effect guiding inerratic Zn deposition
    Rong, Mengyu
    Gao, Zhanming
    Gao, Na
    Chen, Shuaiyu
    Wang, Yang
    Chen, Dongzhi
    Dong, Xueying
    Zhang, Lijing
    Meng, Changgong
    Zhang, Yifu
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [26] Prominent cycling reversibility and kinetics enabled by CaTiO3 protective layer on Zn metal for aqueous Zn-ion batteries
    Lee, Gaeun
    Ahn, Yong Nam
    So, Seongjoon
    Park, Chanwoo
    Bae, Jong-Seong
    Park, Taehyun
    Kim, Il Tae
    Hur, Jaehyun
    JOURNAL OF ENERGY CHEMISTRY, 2025, 100 : 245 - 258
  • [27] A preferentially adsorbed layer on the Zn surface manipulating ion distribution for stable Zn metal anodes
    Guo, Qiang
    Teri, Gele
    Mo, Weixing
    Huang, Jianhang
    Liu, Feng
    Ye, Minghui
    Fu, Dawei
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (08) : 2888 - 2896
  • [28] Stabilizing water and regulating interfacial electrostatic interaction with economical supporting salt for stable Zn metal anode
    Du, Yiqun
    Kang, Rongkai
    Zhang, Boya
    Wang, Han
    Zhang, Jianxin
    JOURNAL OF ENERGY CHEMISTRY, 2025, 101 : 429 - 436
  • [29] Stabilizing a Zn Anode by an Ionic Amphiphilic Copolymer Electrolyte Additive for Long-Life Aqueous Zn-Ion Batteries
    Liu, Yu-E
    Wang, Xin
    BATTERIES-BASEL, 2023, 9 (01):
  • [30] Dendrite-free and anti-corrosion Zn metal anode enabled by an artificial layer for high-performance Zn ion capacitor
    Li, Zhuo
    Gong, Zhe
    Wu, Xiaoyu
    Ye, Ke
    Yan, Jun
    Wang, Guiling
    Wei, Yingjin
    Zhu, Kai
    Yi, Jin
    Cao, Dianxue
    Chen, Guohua
    CHINESE CHEMICAL LETTERS, 2022, 33 (08) : 3936 - 3940