Cross-modal hashing with missing labels

被引:8
|
作者
Ni, Haomin [1 ,3 ]
Zhang, Jianjun [2 ]
Kang, Peipei [2 ]
Fang, Xiaozhao [1 ,4 ]
Sun, Weijun [5 ]
Xie, Shengli [1 ,3 ]
Han, Na [6 ]
机构
[1] Guangdong Univ Technol, Sch Automat, 100 Waihuan Xi Rd, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Sch Comp Sci & Technol, 100 Waihuan Xi Rd, Guangzhou 510006, Guangdong, Peoples R China
[3] GDUT, Guangdong Key Lab IoT Informat Technol, 100 Waihuan Xi Rd, Guangzhou 510006, Guangdong, Peoples R China
[4] GDUT, Key Lab Intelligent Detect & Internet Things Mfg, 100 Waihuan Xi Rd, Guangzhou 510006, Guangdong, Peoples R China
[5] GDUT, Guangdong HongKong Macao Joint Lab Smart Discrete, 100 Waihuan Xi Rd, Guangzhou 510006, Guangdong, Peoples R China
[6] Guangdong Polytech Normal Univ, Sch Comp Sci, 293 Zhonghshan Dadao, Guangzhou 510665, Guangdong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Cross-modal retrieval; Hashing method; Weak supervision; Missing labels; REPRESENTATION;
D O I
10.1016/j.neunet.2023.05.035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hashing-based cross-modal retrieval methods have become increasingly popular due to their advan-tages in storage and speed. While current methods have demonstrated impressive results, there are still several issues that have not been addressed. Specifically, many of these approaches assume that labels are perfectly assigned, despite the fact that in real-world scenarios, labels are often incomplete or partially missing. There are two reasons for this, as manual labeling can be a complex and time-consuming task, and annotators may only be interested in certain objects. As such, cross-modal retrieval with missing labels is a significant challenge that requires further attention. Moreover, the similarity between labels is frequently ignored, which is important for exploring the high-level semantics of labels. To address these limitations, we propose a novel method called Cross-Modal Hashing with Missing Labels (CMHML). Our method consists of several key components. First, we introduce Reliable Label Learning to preserve reliable information from the observed labels. Next, to infer the uncertain part of the predicted labels, we decompose the predicted labels into latent representations of labels and samples. The representation of samples is extracted from different modalities, which assists in inferring missing labels. We also propose Label Correlation Preservation to enhance the similarity between latent representations of labels. Hash codes are then learned from the representation of samples through Global Approximation Learning. We also construct a similarity matrix according to predicted labels and embed it into hash codes learning to explore the value of labels. Finally, we train linear classifiers to map original samples to a low-dimensional Hamming space. To evaluate the efficacy of CMHML, we conduct extensive experiments on four publicly available datasets. Our method is compared to other state-of-the-art methods, and the results demonstrate that our model performs competitively even when most labels are missing.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:60 / 76
页数:17
相关论文
共 50 条
  • [41] Supervised Hierarchical Online Hashing for Cross-modal Retrieval
    Han, Kai
    Liu, Yu
    Wei, Rukai
    Zhou, Ke
    Xu, Jinhui
    Long, Kun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (04)
  • [42] Cross-Modal Hashing Retrieval Based on Density Clustering
    Qi, Xiaojun
    Zeng, Xianhua
    Tang, Hongmei
    IEEE ACCESS, 2025, 13 : 44577 - 44589
  • [43] Supervised Contrastive Discrete Hashing for cross-modal retrieval
    Li, Ze
    Yao, Tao
    Wang, Lili
    Li, Ying
    Wang, Gang
    KNOWLEDGE-BASED SYSTEMS, 2024, 295
  • [44] Generalized Semantic Preserving Hashing for Cross-Modal Retrieval
    Mandal, Devraj
    Chaudhury, Kunal N.
    Biswas, Soma
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) : 102 - 112
  • [45] Label Distribution Guided Hashing for Cross-Modal Retrieval
    Lei, Fatang
    Zhang, Chao
    Li, Huaxiong
    Gao, Yang
    Chen, Chunlin
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2025, 19 (01)
  • [46] Multi-Level Correlation Adversarial Hashing for Cross-Modal Retrieval
    Ma, Xinhong
    Zhang, Tianzhu
    Xu, Changsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (12) : 3101 - 3114
  • [47] Deep Multi-Level Semantic Hashing for Cross-Modal Retrieval
    Ji, Zhenyan
    Yao, Weina
    Wei, Wei
    Song, Houbing
    Pi, Huaiyu
    IEEE ACCESS, 2019, 7 : 23667 - 23674
  • [48] BATCH: A Scalable Asymmetric Discrete Cross-Modal Hashing
    Wang, Yongxin
    Luo, Xin
    Nie, Liqiang
    Song, Jingkuan
    Zhang, Wei
    Xu, Xin-Shun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (11) : 3507 - 3519
  • [49] Discriminative Cross-Modal Hashing with Coupled Semantic Correlation
    Yan S.-Y.
    Liu C.-H.
    Jiang A.-W.
    Ye J.-H.
    Wang M.-W.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (01): : 164 - 175
  • [50] Discrete matrix factorization hashing for cross-modal retrieval
    Fang, Xiaozhao
    Liu, Zhihu
    Han, Na
    Jiang, Lin
    Teng, Shaohua
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (10) : 3023 - 3036