Two infinity norm bounds for the inverse of Nekrasov matrices

被引:4
作者
Wang, Shiyun [1 ]
Liang, Xiaonan [1 ]
Zhou, Yanming [1 ]
Lyu, Zhen-Hua [1 ]
机构
[1] Shenyang Aerosp Univ, Coll Sci, Shenyang 110136, Liaoning, Peoples R China
关键词
Nekrasov matrix; infinity norm; scaling matrix;
D O I
10.1080/03081087.2023.2195150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nekrasov matrices play an important role in various scientific disciplines. The estimation of infinity norm bounds for the inverse of Nekrasov matrices brings a lot of convinces in many fields. In this paper, we introduce two new bounds for the inverse of Nekrasov matrices. The advantages of our bounds and numerical examples are also presented.
引用
收藏
页码:1643 / 1656
页数:14
相关论文
共 50 条
[31]   New results on subdirect sums of Nekrasov matrices [J].
Zeng, Wenlong ;
Wang, Qing-Wen .
LINEAR & MULTILINEAR ALGEBRA, 2025,
[32]   DIAGONAL-SCHUR COMPLEMENTS OF NEKRASOV MATRICES [J].
Wang, Shiyun ;
Li, Qi ;
Sun, Xu ;
Lyu, Zhen-Hua .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 :539-555
[33]   Partition-Nekrasov type matrices: A new subclass of nonsingular H-matrices and applications [J].
Nedovic, Maja ;
Sanca, Ernest .
FILOMAT, 2024, 38 (14) :5083-5097
[34]   Sharp bounds of the inverse matrices resulted from five-point stencil in solving Poisson equations [J].
Xiao, Mingqing ;
Xu, Jianhong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 444 :231-245
[35]   Covering radius of permutation groups with infinity-norm [J].
Wei, Xin ;
Zhang, Xiande .
DISCRETE MATHEMATICS, 2020, 343 (04)
[36]   ROOM IMPULSE RESPONSE SHORTENING WITH INFINITY-NORM OPTIMIZATION [J].
Mei, Tiemin ;
Mertins, Alfred ;
Kallinger, Markus .
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, :3745-3748
[37]   An improvement of the infinity norm bound for the inverse of {P1,P2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{P_{1},P_{2}\}$\end{document}-Nekrasov matrices [J].
Yaqiang Wang ;
Lei Gao .
Journal of Inequalities and Applications, 2019 (1)
[38]   Performance and Complexity Analysis of Infinity-Norm Sphere-Decoding [J].
Seethaler, Dominik ;
Boelcskei, Helmut .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (03) :1085-1105
[39]   Subspace segmentation with a large number of subspaces using infinity norm minimization [J].
Tang, Kewei ;
Su, Zhixun ;
Liu, Yang ;
Jiang, Wei ;
Zhang, Jie ;
Sun, Xiyan .
PATTERN RECOGNITION, 2019, 89 :45-54
[40]   2-D Phase Unwrapping Using Minimum Infinity-Norm [J].
Yu, Hanwen ;
Lan, Yang ;
Lee, Hyongki ;
Cao, Ning .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) :1887-1891