Two infinity norm bounds for the inverse of Nekrasov matrices

被引:4
作者
Wang, Shiyun [1 ]
Liang, Xiaonan [1 ]
Zhou, Yanming [1 ]
Lyu, Zhen-Hua [1 ]
机构
[1] Shenyang Aerosp Univ, Coll Sci, Shenyang 110136, Liaoning, Peoples R China
关键词
Nekrasov matrix; infinity norm; scaling matrix;
D O I
10.1080/03081087.2023.2195150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nekrasov matrices play an important role in various scientific disciplines. The estimation of infinity norm bounds for the inverse of Nekrasov matrices brings a lot of convinces in many fields. In this paper, we introduce two new bounds for the inverse of Nekrasov matrices. The advantages of our bounds and numerical examples are also presented.
引用
收藏
页码:1643 / 1656
页数:14
相关论文
共 50 条
  • [21] An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications
    Li, Chaoqian
    Cvetkovic, Ljiljana
    Wei, Yimin
    Zhao, Jianxing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 565 : 99 - 122
  • [22] Spectral radius and infinity norm of matrices
    Zheng, Baodong
    Wang, Liancheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (01) : 243 - 250
  • [23] Schur Complement-Based Infinity Norm Bound for the Inverse of Dashnic-Zusmanovich Type Matrices
    Zeng, Wenlong
    Liu, Jianzhou
    Mo, Hongmin
    MATHEMATICS, 2023, 11 (10)
  • [24] On Nekrasov matrices
    Li, W
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 281 (1-3) : 87 - 96
  • [25] Max norm estimation for the inverse of block matrices
    Cvetkovic, Ljiljana
    Doroslovacki, Ksenija
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 694 - 706
  • [26] GENERALIZED NEKRASOV MATRICES AND APPLICATIONS
    Mingxian Pang Zhuxiang Li (Dept. of Math
    JournalofComputationalMathematics, 2003, (02) : 183 - 188
  • [27] Upper norm bounds for the inverse of locally doubly strictly diagonally dominant matrices with its applications in linear complementarity problems
    Liu, Jianzhou
    Zhou, Qi
    Xiong, Yebo
    NUMERICAL ALGORITHMS, 2022, 90 (04) : 1465 - 1491
  • [28] Generalized Nekrasov matrices and applications
    Pang, MX
    Li, ZX
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (02) : 183 - 188
  • [29] The Iterative Criterion for Generalized Nekrasov Matrices
    Guo, Aili
    Xu, Nana
    Liu, Jianzhou
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 83 - 86
  • [30] Optimal permutation anticodes with the infinity norm via permanents of (0,1)-matrices
    Schwartz, Moshe
    Tamo, Ltzhak
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (06) : 1761 - 1774