Two infinity norm bounds for the inverse of Nekrasov matrices

被引:4
作者
Wang, Shiyun [1 ]
Liang, Xiaonan [1 ]
Zhou, Yanming [1 ]
Lyu, Zhen-Hua [1 ]
机构
[1] Shenyang Aerosp Univ, Coll Sci, Shenyang 110136, Liaoning, Peoples R China
关键词
Nekrasov matrix; infinity norm; scaling matrix;
D O I
10.1080/03081087.2023.2195150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nekrasov matrices play an important role in various scientific disciplines. The estimation of infinity norm bounds for the inverse of Nekrasov matrices brings a lot of convinces in many fields. In this paper, we introduce two new bounds for the inverse of Nekrasov matrices. The advantages of our bounds and numerical examples are also presented.
引用
收藏
页码:1643 / 1656
页数:14
相关论文
共 50 条
[21]   An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications [J].
Li, Chaoqian ;
Cvetkovic, Ljiljana ;
Wei, Yimin ;
Zhao, Jianxing .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 565 :99-122
[22]   Spectral radius and infinity norm of matrices [J].
Zheng, Baodong ;
Wang, Liancheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (01) :243-250
[23]   Schur Complement-Based Infinity Norm Bound for the Inverse of Dashnic-Zusmanovich Type Matrices [J].
Zeng, Wenlong ;
Liu, Jianzhou ;
Mo, Hongmin .
MATHEMATICS, 2023, 11 (10)
[24]   On Nekrasov matrices [J].
Li, W .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 281 (1-3) :87-96
[25]   Max norm estimation for the inverse of block matrices [J].
Cvetkovic, Ljiljana ;
Doroslovacki, Ksenija .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :694-706
[26]   Upper norm bounds for the inverse of locally doubly strictly diagonally dominant matrices with its applications in linear complementarity problems [J].
Liu, Jianzhou ;
Zhou, Qi ;
Xiong, Yebo .
NUMERICAL ALGORITHMS, 2022, 90 (04) :1465-1491
[27]   GENERALIZED NEKRASOV MATRICES AND APPLICATIONS [J].
Mingxian Pang Zhuxiang Li Dept of Math of Normal college Beihua University Ji Lin China .
JournalofComputationalMathematics, 2003, (02) :183-188
[28]   Generalized Nekrasov matrices and applications [J].
Pang, MX ;
Li, ZX .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (02) :183-188
[29]   The Iterative Criterion for Generalized Nekrasov Matrices [J].
Guo, Aili ;
Xu, Nana ;
Liu, Jianzhou .
ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, :83-86
[30]   Optimal permutation anticodes with the infinity norm via permanents of (0,1)-matrices [J].
Schwartz, Moshe ;
Tamo, Ltzhak .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (06) :1761-1774