An alternating structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant

被引:3
作者
Gao, Xue [1 ]
Cai, Xingju [2 ]
Wang, Xiangfeng [3 ]
Han, Deren [4 ]
机构
[1] Hebei Univ Technol, Inst Math, Tianjin 300401, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[3] East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200026, Peoples R China
[4] Beihang Univ, Sch Math Sci, LMIB, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Proximal gradient decent; Bregman distance; Inertial; Kurdyka-Lojasiewicz property; Nonconvex nonsmooth optimization; 1ST-ORDER METHODS; LINEARIZED MINIMIZATION; CONVERGENCE; CONTINUITY; CONVEXITY;
D O I
10.1007/s10898-023-01300-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the nonconvex nonsmooth minimization problem over abstract sets, whose objective function is the sum of a proper lower semicontinuous biconvex function of the entire variables and two smooth nonconvex functions of their private variables. Fully exploiting the problem structure, we propose an alternating structure-adapted Bregman proximal (ASABP for short) gradient descent algorithm, where the geometry of the abstract set and the function is captured by employing generalized Bregman function. Under the assumption that the underlying function satisfies the Kurdyka-Lojasiewicz property, we prove that each bounded sequence generated by ASABP globally converges to a critical point. We then adopt an inertial strategy to accelerate the ASABP algorithm (IASABP), and utilize a backtracking line search scheme to find "suitable" step sizes, making the algorithm efficient and robust. The global O(1/K) sublinear convergence rate measured by Bregman distance is also established. Furthermore, to illustrate the potential of ASABP and its inertial version (IASABP), we apply them to solving the Poisson linear inverse problem, and the results are promising.
引用
收藏
页码:277 / 300
页数:24
相关论文
共 29 条
[1]   A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization [J].
Ahookhosh, Masoud ;
Hien, Le Thi Khanh ;
Gillis, Nicolas ;
Patrinos, Panagiotis .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 190 (01) :234-258
[2]   Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization [J].
Ahookhosh, Masoud ;
Hien, Le Thi Khanh ;
Gillis, Nicolas ;
Patrinos, Panagiotis .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 79 (03) :681-715
[3]   Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods [J].
Attouch, Hedy ;
Bolte, Jerome ;
Svaiter, Benar Fux .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :91-129
[4]   Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality [J].
Attouch, Hedy ;
Bolte, Jerome ;
Redont, Patrick ;
Soubeyran, Antoine .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) :438-457
[5]   On Linear Convergence of Non-Euclidean Gradient Methods without Strong Convexity and Lipschitz Gradient Continuity [J].
Bauschke, Heinz H. ;
Bolte, Jerome ;
Chen, Jiawei ;
Teboulle, Marc ;
Wang, Xianfu .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 182 (03) :1068-1087
[6]   A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications [J].
Bauschke, Heinz H. ;
Bolte, Jerome ;
Teboulle, Marc .
MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (02) :330-348
[7]   Choose Your Path Wisely: Gradient Descent in a Bregman Distance Framework [J].
Benning, Martin ;
Betcke, Marta M. ;
Ehrhardt, Matthias J. ;
Schonlieb, Carola-Bibiane .
SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (02) :814-843
[8]   Image deblurring with Poisson data: from cells to galaxies [J].
Bertero, M. ;
Boccacci, P. ;
Desidera, G. ;
Vicidomini, G. .
INVERSE PROBLEMS, 2009, 25 (12)
[9]  
Bertsekas D.P., 1995, NONLINEAR PROGRAMMIN, DOI [10.1057/palgrave.jors.2600425, DOI 10.1057/PALGRAVE.JORS.2600425]
[10]  
Bertsekas D.P., 2002, INTRO PROBABILITY