Competitive relationship between electrical degradation and healing in self-healing dielectric polymers

被引:0
|
作者
Han, Lu [1 ]
Xie, Jiaye [1 ]
Li, Qi [1 ]
He, Jinliang [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ageing; dielectric materials; polymers; MICROCAPSULES; DAMAGE;
D O I
10.1049/nde2.12056
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The concept of self-healing dielectric polymers has been heatedly discussed, with the expectation of high damage resistance and longer service time. However, there is still a lack of analysis on the competitive relationship between electrical degradation and self-healing. The authors discussed this relationship in two stages: the design of self-healing strategies and the operation of self-healing polymers. Since the requirements for excellent insulating or mechanical properties are not consistent with the demands for high self-healing capability, trade-offs are necessary during the design of self-healing polymeric systems. In the operation stage of dielectric polymers, some key factors that affect the service lifetime of non-autonomous self-healing dielectric polymers are analysed, including the efficiency and repeatability of self-healing, and the frequency of healing maintenance. For autonomous self-healing dielectrics, the simultaneous processes of ageing and healing are investigated using a self-healing epoxy resin based on microcapsules and in situ-generated radicals. A quicker recovery of insulating properties, in terms of partial discharge magnitude, was observed under appropriate healing voltages. However, the self-healing ability might vanish when the voltage was too high, verifying the competitive relationship between electrical degradation and self-healing.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 50 条
  • [21] New attitude in polymers - self-healing
    Nellesen, A.
    Schmidt, A. M.
    Bertling, J.
    von Tapavicza, M.
    DESIGN AND NATURE V: COMPARING DESIGN IN NATURE WITH SCIENCE AND ENGINEERING, 2010, 138 : 431 - +
  • [22] Advances in self-healing polymers.
    Moore, JS
    Rule, JD
    Hickenboth, C
    Sottos, N
    White, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U930 - U930
  • [23] Design of self-healing biodegradable polymers
    Guadagno, Liberata
    Raimondo, Marialuigia
    Catauro, Michelina
    Sorrentino, Andrea
    Calabrese, Elisa
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (09) : 5463 - 5472
  • [24] Molecular self-healing processes in polymers
    Chipara, M
    Wooley, K
    MATERIALS FOR SPACE APPLICATIONS, 2005, 851 : 127 - 132
  • [25] SELF-HEALING MECHANISM OF CRACKS IN POLYMERS
    MALINSKI.YM
    PROKOPEN.VV
    KARGIN, VA
    DOKLADY AKADEMII NAUK SSSR, 1969, 189 (03): : 568 - &
  • [26] Hyperbranched polyisobutylenes for self-healing polymers
    Doehler, D.
    Zare, P.
    Binder, W. H.
    POLYMER CHEMISTRY, 2014, 5 (03) : 992 - 1000
  • [27] Introduction: self-healing polymers and composites
    Sottos, Nancy
    White, Scott
    Bond, Ian
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2007, 4 (13) : 347 - 348
  • [28] Design and synthesis of self-healing polymers
    ZHANG MingQiu* & RONG MinZhi Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
    DSAPM Lab
    Science China(Chemistry), 2012, (05) : 647 - 675
  • [29] Design and synthesis of self-healing polymers
    MingQiu Zhang
    MinZhi Rong
    Science China Chemistry, 2012, 55 : 648 - 676
  • [30] Mechanoresponsive polymers for self-healing applications
    Nagamani, Chikkannagari
    Liu, Huiying
    Moore, Jeffery
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250