Air Target Threat Assessment Based on PCNN Neural Network

被引:1
作者
Yang Jia [1 ]
Lv Mingwei [1 ]
机构
[1] Shenyang Aircraft Design & Res Inst AVIC, Shenyang 110035, Peoples R China
来源
PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022 | 2023年 / 1010卷
关键词
PCNN neural network; Threat assessment; Aerial target; Air battlefield; Deep learning; Assistant decision;
D O I
10.1007/978-981-99-0479-2_285
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Air battlefield target threat assessment assists pilots in attack and defense decisions, which is of great significance for future battlefield battle command. Aiming at the problem of air target threat assessment classification, an air target threat assessment model based on PCNN neural network is established, and the simulation training is carried out by using the model. The results show that the model can effectively achieve the classification of air target threat assessment in the aspect of air target threat assessment, provide an idea and method for the future battlefield battle command research, and promote the development and implementation of battlefield target threat assessment system.
引用
收藏
页码:3092 / 3102
页数:11
相关论文
共 15 条
  • [1] Chen X., 2014, RES DEPTH LEARNING A
  • [2] Cheng Ming, 2010, Electronics Optics & Control, V17, P11
  • [3] Fu Zhaowang, 2009, Electronics Optics & Control, V16, P29
  • [4] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [5] Hinman M.L., 2002, P 5 INT C INF FUS 20
  • [6] Liu M., 2002, J AIR FORCE ENG U NA, V6, P25
  • [7] Pan Y., 2020, P 8 CHIN CONTR C, P263
  • [8] Theodoridis S., 2015, Machine Learning, P875, DOI [DOI 10.1016/B978-0-12-818803-3.00030-1, DOI 10.1016/B978-0-12-801522-3.00018-5]
  • [9] Wang G., 2013, TARGET THREAT ESTIMA
  • [10] Yan S.L., 2015, COMPUT DIG ENG, V43, P2150