In Vivo Delivery of Therapeutic Molecules by Transplantation of Genome-Edited Induced Pluripotent Stem Cells

被引:2
|
作者
Nakajima, Ittetsu [1 ,2 ]
Tsukimura, Takahiro [3 ]
Ono, Terumi [1 ,2 ]
Shiga, Tomoko [4 ]
Shitara, Hiroshi [5 ]
Togawa, Tadayasu [3 ]
Sakuraba, Hitoshi [4 ]
Miyaoka, Yuichiro [1 ,2 ,6 ,7 ]
机构
[1] Tokyo Metropolitan Inst Med Sci, Regenerat Med Project, Tokyo, Japan
[2] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Tokyo, Japan
[3] Meiji Pharmaceut Univ, Dept Funct Bioanal, Tokyo, Japan
[4] Meiji Pharmaceut Univ, Dept Clin Genet, Tokyo, Japan
[5] Tokyo Metropolitan Inst Med Sci, Lab Transgenic Technol, Tokyo, Japan
[6] Ochanomizu Univ, Grad Sch Humanities & Sci, Tokyo, Japan
[7] Tokyo Metropolitan Inst Med Sci, Regenerat Med Project, Tokyo 1568506, Japan
基金
日本学术振兴会;
关键词
induced pluripotent stem cells; genome editing; cell therapy; drug delivery system; Fabry disease; FABRY-DISEASE; REPLACEMENT THERAPY; ALPHA-GALACTOSIDASE;
D O I
10.1177/09636897231173734
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Human induced pluripotent stem cells (iPSCs) have already been used in transplantation therapies. Currently, cells from healthy people are transplanted into patients with diseases. With the rapid evolution of genome editing technology, genetic modification could be applied to enhance the therapeutic effects of iPSCs, such as the introduction of secreted molecules to make the cells a drug delivery system. Here, we addressed this possibility by utilizing a Fabry disease mouse model, as a proof of concept. Fabry disease is caused by the lack of alpha-galactosidase A (GLA). We previously developed an immunotolerant therapeutic molecule, modified alpha-N-acetylgalactosaminidase (mNAGA). We confirmed that secreted mNAGA from genome-edited iPSCs compensated for the GLA activity in GLA-deficient cells using an in vitro co-culture system. Moreover, iPSCs transplanted into Fabry model mice secreted mNAGA and supplied GLA activity to the liver. This study demonstrates the great potential of genome-edited iPSCs secreting therapeutic molecules.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Therapeutic Genome Editing and In Vivo Delivery
    Ramirez-Phillips, Amanda Catalina
    Liu, Dexi
    AAPS JOURNAL, 2021, 23 (04)
  • [22] Rapid identification of genome-edited mesenchymal stem cell colonies via Cas9
    Jiang, Wei
    Lian, Wei
    Chen, Jieting
    Li, Wenlei
    Huang, Jieyong
    Lai, Baoyu
    Li, Lingyun
    Huang, Zhong
    Xu, Jianyong
    BIOTECHNIQUES, 2019, 66 (05) : 231 - 234
  • [23] Therapeutic Genome Editing and In Vivo Delivery
    Amanda Catalina Ramirez-Phillips
    Dexi Liu
    The AAPS Journal, 23
  • [24] Chromatin structure of pluripotent stem cells and induced pluripotent stem cells
    Delgado-Olguin, Paul
    Recillas-Targa, Felix
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2011, 10 (01) : 37 - 49
  • [25] Do not overlook the possibility of genome-edited somatic cells ending up in the human germline
    Chin, Alexis Heng Boon
    Sun, Ningyu
    JOURNAL OF COMMUNITY GENETICS, 2024, : 749 - 752
  • [26] Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells on Traumatic Brain Injury
    Imai, Ryotaro
    Tamura, Ryota
    Yo, Masahiro
    Sato, Mizuto
    Fukumura, Mariko
    Takahara, Kento
    Kase, Yoshitaka
    Okano, Hideyuki
    Toda, Masahiro
    STEM CELLS, 2023, 41 (06) : 603 - 616
  • [27] Induced pluripotent stem cells, a giant leap for mankind therapeutic applications
    Braganca, Jose
    Lopes, Joao Andre
    Mendes-Silva, Leonardo
    Almeida Santos, Joao Miguel
    WORLD JOURNAL OF STEM CELLS, 2019, 11 (07): : 421 - 430
  • [28] Induced pluripotent stem cells for cardiac repair
    Limor Zwi-Dantsis
    Lior Gepstein
    Cellular and Molecular Life Sciences, 2012, 69 : 3285 - 3299
  • [29] Induced pluripotent stem cells for cardiac repair
    Zwi-Dantsis, Limor
    Gepstein, Lior
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2012, 69 (19) : 3285 - 3299
  • [30] i-GONAD: A method for generating genome-edited animals without ex vivo handling of embryos
    Ohtsuka, Masato
    Sato, Masahiro
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2019, 61 (05) : 306 - 315