In Vivo Delivery of Therapeutic Molecules by Transplantation of Genome-Edited Induced Pluripotent Stem Cells

被引:2
|
作者
Nakajima, Ittetsu [1 ,2 ]
Tsukimura, Takahiro [3 ]
Ono, Terumi [1 ,2 ]
Shiga, Tomoko [4 ]
Shitara, Hiroshi [5 ]
Togawa, Tadayasu [3 ]
Sakuraba, Hitoshi [4 ]
Miyaoka, Yuichiro [1 ,2 ,6 ,7 ]
机构
[1] Tokyo Metropolitan Inst Med Sci, Regenerat Med Project, Tokyo, Japan
[2] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Tokyo, Japan
[3] Meiji Pharmaceut Univ, Dept Funct Bioanal, Tokyo, Japan
[4] Meiji Pharmaceut Univ, Dept Clin Genet, Tokyo, Japan
[5] Tokyo Metropolitan Inst Med Sci, Lab Transgenic Technol, Tokyo, Japan
[6] Ochanomizu Univ, Grad Sch Humanities & Sci, Tokyo, Japan
[7] Tokyo Metropolitan Inst Med Sci, Regenerat Med Project, Tokyo 1568506, Japan
基金
日本学术振兴会;
关键词
induced pluripotent stem cells; genome editing; cell therapy; drug delivery system; Fabry disease; FABRY-DISEASE; REPLACEMENT THERAPY; ALPHA-GALACTOSIDASE;
D O I
10.1177/09636897231173734
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Human induced pluripotent stem cells (iPSCs) have already been used in transplantation therapies. Currently, cells from healthy people are transplanted into patients with diseases. With the rapid evolution of genome editing technology, genetic modification could be applied to enhance the therapeutic effects of iPSCs, such as the introduction of secreted molecules to make the cells a drug delivery system. Here, we addressed this possibility by utilizing a Fabry disease mouse model, as a proof of concept. Fabry disease is caused by the lack of alpha-galactosidase A (GLA). We previously developed an immunotolerant therapeutic molecule, modified alpha-N-acetylgalactosaminidase (mNAGA). We confirmed that secreted mNAGA from genome-edited iPSCs compensated for the GLA activity in GLA-deficient cells using an in vitro co-culture system. Moreover, iPSCs transplanted into Fabry model mice secreted mNAGA and supplied GLA activity to the liver. This study demonstrates the great potential of genome-edited iPSCs secreting therapeutic molecules.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An in vitro model of polycystic liver disease using genome-edited human inducible pluripotent stem cells
    Kamiya, Akihide
    Chikada, Hiromi
    Ida, Kinuyo
    Ando, Emi
    Tsuruya, Kota
    Kagawa, Tatehiro
    Inagaki, Yutaka
    STEM CELL RESEARCH, 2018, 32 : 17 - 24
  • [2] Induction of therapeutic levels of HbF in genome-edited primary β039-thalassaemia haematopoietic stem and progenitor cells
    Mingoia, Maura
    Caria, Cristian A.
    Ye, Lin
    Asunis, Isadora
    Marongiu, M. Franca
    Manunza, Laura
    Sollaino, M. Carla
    Wang, Jiaming
    Cabriolu, Annalisa
    Kurita, Ryo
    Nakamura, Yukio
    Cucca, Francesco
    Kan, Yuet W.
    Marini, M. Giuseppina
    Moi, Paolo
    BRITISH JOURNAL OF HAEMATOLOGY, 2021, 192 (02) : 395 - 404
  • [3] Acquisition of chromosome 1q duplication in parental and genome-edited human-induced pluripotent stem cell-derived neural stem cells results in their higher proliferation rate in vitro and in vivo
    Mehrjardi, Narges Zare
    Molcanyi, Marek
    Hatay, Firuze Fulya
    Timmer, Marco
    Shahbazi, Ebrahim
    Ackermann, Justus P.
    Herms, Stefan
    Heilmann-Heimbach, Stefanie
    Wunderlich, Thomas F.
    Prochnow, Nora
    Haghikia, Aiden
    Lampert, Angelika
    Hescheler, Juergen
    Neugebauer, Edmund A. M.
    Baharvand, Hossein
    Saric, Tomo
    CELL PROLIFERATION, 2020, 53 (10)
  • [4] Development of an efficient single-cell cloning and expansion strategy for genome edited induced pluripotent stem cells
    Bhargava, Nupur
    Thakur, Priya
    Muruganandam, Thulasi Priyadharshini
    Jaitly, Shashank
    Gupta, Pragya
    Lohani, Neelam
    Goswami, Sangam Giri
    Saravanakumar, Vinodh
    Bhattacharya, Saurabh Kumar
    Jain, Suman
    Ramalingam, Sivaprakash
    MOLECULAR BIOLOGY REPORTS, 2022, 49 (08) : 7887 - 7898
  • [5] Development of an efficient single-cell cloning and expansion strategy for genome edited induced pluripotent stem cells
    Nupur Bhargava
    Priya Thakur
    Thulasi Priyadharshini Muruganandam
    Shashank Jaitly
    Pragya Gupta
    Neelam Lohani
    Sangam Giri Goswami
    Vinodh Saravanakumar
    Saurabh Kumar Bhattacharya
    Suman Jain
    Sivaprakash Ramalingam
    Molecular Biology Reports, 2022, 49 : 7887 - 7898
  • [6] Surrogate production of genome-edited sperm from a different subfamily by spermatogonial stem cell transplantation
    Fenghua Zhang
    Yongkang Hao
    Xianmei Li
    Yi Li
    Ding Ye
    Ru Zhang
    Xiaosi Wang
    Mudan He
    Houpeng Wang
    Zuoyan Zhu
    Yonghua Sun
    Science China Life Sciences, 2022, 65 : 969 - 987
  • [7] Surrogate production of genome-edited sperm from a different subfamily by spermatogonial stem cell transplantation
    Zhang, Fenghua
    Hao, Yongkang
    Li, Xianmei
    Li, Yi
    Ye, Ding
    Zhang, Ru
    Wang, Xiaosi
    He, Mudan
    Wang, Houpeng
    Zhu, Zuoyan
    Sun, Yonghua
    SCIENCE CHINA-LIFE SCIENCES, 2022, 65 (05) : 969 - 987
  • [8] Gene delivery methods and genome editing of human pluripotent stem cells
    Czerwinska, Patrycja
    Mazurek, Sylwia
    Kolodziejczak, Iga
    Wiznerowicz, Maciej
    REPORTS OF PRACTICAL ONCOLOGY AND RADIOTHERAPY, 2019, 24 (02) : 180 - 187
  • [9] Detection of genome-edited cells by oligoribonucleotide interference-PCR
    Fujita, Toshitsugu
    Yuno, Miyuki
    Kitaura, Fusako
    Fujii, Hodaka
    DNA RESEARCH, 2018, 25 (04) : 395 - 407
  • [10] Patient-Specific and Genome-Edited Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Brugada Syndrome
    Liang, Ping
    Sallam, Karim
    Wu, Haodi
    Li, Yingxin
    Itzhaki, Ilanit
    Garg, Priyanka
    Zhang, Ying
    Vermglinchan, Vittavat
    Lan, Feng
    Gu, Mingxia
    Gong, Tingyu
    Yan Zhuge
    He, Chunjiang
    Ebert, Antje D.
    Sanchez-Freire, Veronica
    Churko, Jared
    Hu, Shijun
    Sharma, Arun
    Lam, Chi Keung
    Scheinman, Melvin M.
    Bers, Donald M.
    Wu, Joseph C.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2016, 68 (19) : 2086 - 2096