A Resilient Intelligent Traffic Signal Control Scheme for Accident Scenario at Intersections via Deep Reinforcement Learning

被引:5
|
作者
Zeinaly, Zahra [1 ]
Sojoodi, Mahdi [1 ]
Bolouki, Sadegh [2 ]
机构
[1] Tarbiat Modares Univ, Dept Elect & Comp Engn, Tehran 14115111, Iran
[2] Polytech Montreal, Dept Mech Engn, Montreal, PQ H3T 1J4, Canada
关键词
traffic signal control; accident; deep reinforcement learning; traffic safety;
D O I
10.3390/su15021329
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Deep reinforcement learning methods have shown promising results in the development of adaptive traffic signal controllers. Accidents, weather conditions, or special events all have the potential to abruptly alter the traffic flow in real life. The traffic light must take immediate and appropriate action based on a reasonable understanding of the environment. In this way, traffic congestion would be prevented. In this paper, we develop a reliable controller for such a highly dynamic environment and investigate the resilience of these controllers to a variety of environmental disruptions, such as accidents. In this method, the agent is provided with a complete understanding of the environment by discretizing the intersection and modifying the state space. The proposed algorithm is independent of the location and time of accidents. If the location of the accident changes, the agent does not need to be retrained. The agent is trained using deep Q-learning and experience replay. The model is evaluated in the traffic microsimulator SUMO. The simulation results demonstrate that the proposed method is effective at shortening queues when there is disruption.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] HumanLight: Incentivizing ridesharing via human-centric deep reinforcement learning in traffic signal control
    Vlachogiannis, Dimitris M.
    Wei, Hua
    Moura, Scott
    Macfarlane, Jane
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 162
  • [42] Deep Reinforcement Q-Learning for Intelligent Traffic Control in Mass Transit
    Khozam, Shurok
    Farhi, Nadir
    SUSTAINABILITY, 2023, 15 (14)
  • [43] Multiple intersections traffic signal control based on cooperative multi-agent reinforcement learning
    Liu, Junxiu
    Qin, Sheng
    Su, Min
    Luo, Yuling
    Wang, Yanhu
    Yang, Su
    INFORMATION SCIENCES, 2023, 647
  • [44] Optimization of Traffic Signal Cooperative Control with Sparse Deep Reinforcement Learning Based on Knowledge Sharing
    Fan, Lingling
    Yang, Yusong
    Ji, Honghai
    Xiong, Shuangshuang
    ELECTRONICS, 2025, 14 (01):
  • [45] Decentralized signal control for multi-modal traffic network: A deep reinforcement learning approach
    Yu, Jiajie
    Laharotte, Pierre-Antoine
    Han, Yu
    Leclercq, Ludovic
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 154
  • [46] Traffic Signal Control System Using Deep Reinforcement Learning With Emphasis on Reinforcing Successful Experiences
    Kodama, Naoki
    Harada, Taku
    Miyazaki, Kazuteru
    IEEE ACCESS, 2022, 10 : 128943 - 128950
  • [47] Traffic Signal Control Optimization Based on Deep Reinforcement Learning with Attention Mechanisms
    Ni, Wenlong
    Wang, Peng
    Li, Zehong
    Li, Chuanzhuang
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT III, 2024, 14449 : 147 - 158
  • [48] Minimize Pressure Difference Traffic Signal Control Based on Deep Reinforcement Learning
    Yu, Pengcheng
    Luo, Jie
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5493 - 5498
  • [49] Adaptive urban traffic signal control based on enhanced deep reinforcement learning
    Cai, Changjian
    Wei, Min
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] Traffic Signal Control with Deep Reinforcement Learning and Self-attention Mechanism
    Zhang X.
    Nie S.
    Li Z.
    Zhang H.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (02): : 96 - 104