Topology Change Aware Data-Driven Probabilistic Distribution State Estimation Based on Gaussian Process

被引:10
作者
Cao, Di [1 ]
Zhao, Junbo [2 ]
Hu, Weihao [1 ]
Liao, Qishu [1 ]
Huang, Qi [1 ,3 ]
Chen, Zhe [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[3] Chengdu Univ Technol, Coll Energy, Chengdu 610059, Peoples R China
[4] Aalborg Univ, Dept Energy Technol, Aalborg, Denmark
关键词
Topology; Network topology; Training; Task analysis; Kernel; Switches; State estimation; Distribution system state estimation; Gaussian process regression; topology change; machine learning; DISTRIBUTION-SYSTEMS; GENERATION;
D O I
10.1109/TSG.2022.3204221
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the distribution system state estimation (DSSE) with unknown topology change. A specific kernel that can transfer across tasks is adopted to find relevant patterns from samples under different topologies and induce knowledge transfer. This enables the proposed method to achieve effective inductive reasoning when only limited data are available under a new topology. The Bayesian inference inherently allows us to quantify the uncertainties of the DSSE results. Comparative results with other methods on IEEE test systems demonstrate the improved accuracy and robustness against topology change.
引用
收藏
页码:1317 / 1320
页数:4
相关论文
共 8 条
  • [1] A Game-Theoretic Data-Driven Approach for Pseudo-Measurement Generation in Distribution System State Estimation
    Dehghanpour, Kaveh
    Yuan, Yuxuan
    Wang, Zhaoyu
    Bu, Fankun
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (06) : 5942 - 5951
  • [2] Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning
    Mestav, Kursat Rasim
    Luengo-Rozas, Jaime
    Tong, Lang
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (06) : 4910 - 4920
  • [3] A Review on Distribution System State Estimation
    Primadianto, Anggoro
    Lu, Chan-Nan
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (05) : 3875 - 3883
  • [4] Linear Programming Contractor for Interval Distribution State Estimation Using RDM Arithmetic
    Vietcuong Ngo
    Wu, Wenchuan
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) : 2114 - 2126
  • [5] Williams C., 2008, ADV NEURAL INFORM PR, P153
  • [6] Data-Driven Learning-Based Optimization for Distribution System State Estimation
    Zamzam, Ahmed S.
    Fu, Xiao
    Sidiropoulos, Nicholas D.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (06) : 4796 - 4805
  • [7] Interval State Estimation With Uncertainty of Distributed Generation and Line Parameters in Unbalanced Distribution Systems
    Zhang, Ying
    Wang, Jianhui
    Li, Zhengshuo
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (01) : 762 - 772
  • [8] Bayesian Learning-Based Harmonic State Estimation in Distribution Systems With Smart Meter and DPMU Data
    Zhou, Wei
    Ardakanian, Omid
    Zhang, Hai-Tao
    Yuan, Ye
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (01) : 832 - 845