Fabrication of high performance high-temperature proton exchange membranes through constructing stable cation-rich domain in polybenzimidazole membrane

被引:49
作者
Peng, Jinwu [1 ]
Fu, Xianzhu [1 ]
Luo, Jingli [1 ]
Wang, Lei [1 ,2 ]
Peng, Xiaojun [1 ,3 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen Key Lab Polymer Sci & Technol, Shenzhen 518060, Peoples R China
[2] Hanshan Normal Univ, Sch Mat Sci & Engn, Chaozhou 521041, Guangdong, Peoples R China
[3] Dalian Univ Technol, Shenzhen Res Inst, State Key Lab Fine Chem, Shenzhen Virtual Univ Pk, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
High-temperature proton exchange membrane; Composite membrane; Stable interface; Excellent fuel cell performance; COMPOSITE MEMBRANES; ETHER KETONE); POLYMERS;
D O I
10.1016/j.cej.2022.139609
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Improving the power density (<700 mW cm-2) and long-term durability of fuel cells are crucial for promoting the practical application of high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In this study, a high-power density greater than 1000 mW cm-2 of fuel cell is obtained based on the designed polybenzimidazole (PBI) composite membranes containing cation-rich domains and stable two-phase interfaces. The newly designed membranes were fabricated by incorporating densely alkyl-bromide-functionalized polymer particles into the PBI membrane. The resulting composite membrane exhibited an improved mechanical strength of 12.6 MPa and high proton conductivity of 181.6 mS cm-1 at 160 degrees C. The power density of the corresponding composite membrane-based fuel cell reached 1090.5 mW cm-2 under a Pt loading of 0.6 mg cm-2 and H2/O2, without any humidification or backpressure at 160 degrees C, which is one of the most outstanding cell performances among all reported acid-doped high-temperature proton exchange membranes. Additionally, superior stability with a voltage decay rate of 0.0132 mV h-1 was observed in the long-term durability test. Thus, the proposed PBI composite membranes exhibit potential for use in HT-PEMFCs.
引用
收藏
页数:10
相关论文
共 44 条
  • [1] From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides
    Aili, David
    Yang, Jingshuai
    Jankova, Katja
    Henkensmeier, Dirk
    Li, Qingfeng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (26) : 12854 - 12886
  • [2] Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells
    Aili, David
    Allward, Todd
    Alfaro, Silvia Martinez
    Hartmann-Thompson, Claire
    Steenberg, Thomas
    Hjuler, Hans Aage
    Li, Qingfeng
    Jensen, Jens Oluf
    Stark, Edmund J.
    [J]. ELECTROCHIMICA ACTA, 2014, 140 : 182 - 190
  • [3] Performance of Quaternized Polybenzimidazole-Cross-Linked Poly(vinylbenzyl chloride) Membranes in HT-PEMFCs
    Arslan, Funda
    Chuluunbandi, Khajidkhand
    Freiberg, Anna T. S.
    Kormanyos, Attila
    Sit, Ferit
    Cherevko, Serhiy
    Kerres, Jochen
    Thiele, Simon
    Boehm, Thomas
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (47) : 56594 - 56606
  • [4] Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells
    Bai, Huijuan
    Peng, Hanging
    Xiang, Yan
    Zhang, Jin
    Wang, Haining
    Lu, Shanfu
    Zhuang, Lin
    [J]. JOURNAL OF POWER SOURCES, 2019, 443
  • [5] Highly Conductive Polybenzimidazole Membranes at Low Phosphoric Acid Uptake with Excellent Fuel Cell Performances by Constructing Long-Range Continuous Proton Transport Channels Using a Metal-Organic Framework (UIO-66)
    Chen, Jiale
    Wang, Li
    Wang, Lei
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) : 41350 - 41358
  • [6] High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200-250 °C
    Cheng, Yi
    Zhang, Jin
    Lu, Shanfu
    Kuang, Haohua
    Bradley, John
    De Marco, Roland
    Aili, David
    Li, Qingfeng
    Cui, Cheng Qiang
    Jiang, San Ping
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (49) : 22487 - 22499
  • [7] Composite membrane by incorporating sulfonated graphene oxide in polybenzimidazole for high temperature proton exchange membrane fuel cells
    Devrim, Yilser
    Durmus, Gizem Nur Bulanik
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (14) : 9004 - 9017
  • [8] Insights into the performance and degradation of polybenzimidazole/muscovite composite membranes in high-temperature proton exchange membrane fuel cells
    Guo, Zunmin
    Chen, Jianuo
    Byun, Jae Jong
    Perez-Page, Maria
    Ji, Zhaoqi
    Zhao, Ziyu
    Holmes, Stuart M.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 641
  • [9] High-performance polymer electrolyte membranes incorporated with 2D silica nanosheets in high-temperature proton exchange membrane fuel cells
    Guo, Zunmin
    Chen, Jianuo
    Byun, Jae Jong
    Cai, Rongsheng
    Perez-Page, Maria
    Sahoo, Madhumita
    Ji, Zhaoqi
    Haigh, Sarah J.
    Holmes, Stuart M.
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2022, 64 (64): : 323 - 334
  • [10] A phosphonated phenol-formaldehyde-based high-temperature proton exchange membrane with intrinsic protonic conductors and proton transport channels
    Hao, Xiaofeng
    Li, Zhen
    Xiao, Min
    Han, Dongmei
    Huang, Sheng
    Xi, Guan
    Wang, Shuanjin
    Meng, Yuezhong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (20) : 10916 - 10925