Dynamics of a Zika virus transmission model with seasonality and periodic delays

被引:8
作者
Wang, Wei [1 ]
Zhou, Mengchen [1 ]
Zhang, Tonghua [2 ]
Feng, Zhaosheng [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Swinburne Univ Technol, Dept Math, Hawthorn, Vic 3122, Australia
[3] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 116卷
关键词
Zika virus; Seasonality; Periodic delays; Basic reproduction number; Global dynamics; COST-EFFECTIVENESS ANALYSIS; REACTION-DIFFUSION MODEL; SEXUAL TRANSMISSION; EPIDEMIC; OUTBREAK; HOST; INFECTION; DISEASES; IMPACT; STATES;
D O I
10.1016/j.cnsns.2022.106830
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Zika virus is an arbovirus transmitted by mosquitoes, which can cause low fever, mild skin rash and eye swelling. In severe cases, it may cause neurological and autoimmune complications, such as microcephaly. Climate factors and weather, especially tempera-ture, have a strong effect on the transmission dynamics of vector-borne diseases, such as Dengue, West Nile virus, Schistosomiasis, and Zika. To study the comprehensive effects of spatial structure, seasonality and the temperature sensitivity of incubation period on the transmission of Zika virus, we propose a PDE model with periodic delay. We present the basic reproduction number R0 and explore the global dynamics of the model. Our simulations show that (i) it is possible to overestimate R0 in the periodic system if the spatial averaged system is used; (ii) R0 can be underestimated in the absence of seasonality; and (iii) shortening the incubation period may reduce the risk of disease transmission, which is critical for modeling the transmission of Zika virus dynamics to understand geographic and seasonal limits of Zika risk.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 77 条
[1]   Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases [J].
Abboubakar, Hamadjam ;
Kamgang, Jean Claude ;
Nkamba, Leontine Nkague ;
Tieudjo, Daniel .
JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 76 (1-2) :379-427
[2]   Mathematical model for Zika virus dynamics with sexual transmission route [J].
Agusto, F. B. ;
Bewick, S. ;
Fagan, W. F. .
ECOLOGICAL COMPLEXITY, 2017, 29 :61-81
[3]  
[Anonymous], WHO
[4]  
Asano E, 2008, MATH BIOSCI ENG, V5, P219
[5]   The epidemic threshold of vector-borne diseases with seasonality [J].
Bacaer, Nicolas ;
Guernaoui, Souad .
JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (03) :421-436
[6]   A reaction-diffusion malaria model with seasonality and incubation period [J].
Bai, Zhenguo ;
Peng, Rui ;
Zhao, Xiao-Qiang .
JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 77 (01) :201-228
[7]   A theoretical model for Zika virus transmission [J].
Bonyah, Ebenezer ;
Khan, Muhammad Altaf ;
Okosun, K. O. ;
Islam, Saeed .
PLOS ONE, 2017, 12 (10)
[8]   Zika Virus Infection in Pregnant Women in Rio de Janeiro [J].
Brasil, P. ;
Pereira, J. P., Jr. ;
Moreira, M. E. ;
Ribeiro Nogueira, R. M. ;
Damasceno, L. ;
Wakimoto, M. ;
Rabello, R. S. ;
Valderramos, S. G. ;
Halai, U. -A. ;
Salles, T. S. ;
Zin, A. A. ;
Horovitz, D. ;
Daltro, P. ;
Boechat, M. ;
Gabaglia, C. Raja ;
Carvalho de Sequeira, P. ;
Pilotto, J. H. ;
Medialdea-Carrera, R. ;
Cotrim da Cunha, D. ;
Abreu de Carvalho, L. M. ;
Pone, M. ;
Machado Siqueira, A. ;
Calvet, G. A. ;
Rodrigues Baiao, A. E. ;
Neves, E. S. ;
Nassar de Carvalho, P. R. ;
Hasue, R. H. ;
Marschik, P. B. ;
Einspieler, C. ;
Janzen, C. ;
Cherry, J. D. ;
Bispo de Filippis, A. M. ;
Nielsen-Saines, K. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (24) :2321-2334
[9]   Global properties of vector-host disease models with time delays [J].
Cai, Li-Ming ;
Li, Xue-Zhi ;
Fang, Bin ;
Ruan, Shigui .
JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (06) :1397-1423
[10]   Global transmission dynamics of a Zika virus model [J].
Cai, Yongli ;
Wang, Kai ;
Wang, Weiming .
APPLIED MATHEMATICS LETTERS, 2019, 92 :190-195