Entropies of Sums of Independent Gamma Random Variables

被引:0
作者
Chasapis, Giorgos [1 ]
Singh, Salil [1 ]
Tkocz, Tomasz [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
Entropy; Max-entropy; Gamma distribution; Weighted sums; Schur-convexity; BOUNDS; INEQUALITIES; PROBABILITY; SECTIONS; CUBE;
D O I
10.1007/s10959-022-01192-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish several Schur-convexity type results under fixed variance for weighted sums of independent gamma random variables and obtain nonasymptotic bounds on their Renyi entropies. In particular, this pertains to the recent results by Bartczak-Nayar-Zwara as well as Bobkov-Naumov-Ulyanov, offering simple proofs of the former and extending the latter.
引用
收藏
页码:1227 / 1242
页数:16
相关论文
共 35 条
[1]   CUBE SLICING IN RN [J].
BALL, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 97 (03) :465-473
[2]   Sharp Variance-Entropy Comparison for Nonnegative Gaussian Quadratic Forms [J].
Bartczak, Maciej ;
Nayar, Piotr ;
Zwara, Szymon .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (12) :7740-7751
[3]  
Bhatia R., 1997, MATRIX ANAL
[4]  
Bialobrzeski M., ARXIV
[5]  
Bobkov S. G., 2021, ARXIV201210747, V371, P178
[6]   Concentration functions and entropy bounds for discrete log-concave distributions [J].
Bobkov, Sergey G. ;
Marsiglietti, Arnaud ;
Melbourne, James .
COMBINATORICS PROBABILITY AND COMPUTING, 2022, 31 (01) :54-72
[7]   Variants of the Entropy Power Inequality [J].
Bobkov, Sergey G. ;
Marsiglietti, Arnaud .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (12) :7747-7752
[8]   On Concentration Functions of Random Variables [J].
Bobkov, Sergey G. ;
Chistyakov, Gennadiy P. .
JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (03) :976-988
[9]   Entropy Power Inequality for the Renyi Entropy [J].
Bobkov, Sergey G. ;
Chistyakov, Gennadiy P. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) :708-714
[10]  
Chasapis G., ARXIV