Boundary controllability of Riemann-Liouville fractional semilinear equations

被引:2
|
作者
Tajani, Asmae [1 ,2 ]
El Alaoui, Fatima-Zahrae [2 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Math, P-3810193 Aveiro, Portugal
[2] Moulay Ismail Univ, Fac Sci, Dept Math, TSI Team, Meknes 11201, Morocco
关键词
Time-fractional systems; Semilinear systems; Boundary regional controllability; Fractional diffusion logistic growth law model; APPROXIMATE CONTROLLABILITY; REGIONAL CONTROLLABILITY; EVOLUTION-EQUATIONS; SYSTEMS;
D O I
10.1016/j.cnsns.2023.107814
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the boundary regional controllability of a class of Riemann-Liouville fractional semilinear sub -diffusion systems with boundary Neumann conditions. The result is obtained by using semi -group theory, the fractional Hilbert uniqueness method, and Schauder's fixed point theorem. Conditions on the order of the derivative, internal region, and on the nonlinear part are obtained. Furthermore, we present appropriate sufficient conditions for the considered fractional system to be regionally controllable and, therefore, boundary regionally controllable. An example of a population density system with diffusion is given to illustrate the obtained theoretical results. Numerical simulations show that the proposed method provides satisfying results regarding two cases of the control operator.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Boundary Controllability of Riemann-Liouville Fractional Semilinear Evolution Systems
    Tajani, Asmae
    El Alaoui, Fatima-Zahrae
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 198 (02) : 767 - 780
  • [2] Regional Controllability of Riemann-Liouville Time-Fractional Semilinear Evolution Equations
    Tajani, Asmae
    El Alaoui, Fatima Zahrae
    Boutoulout, Ali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [3] Approximate controllability for Riemann-Liouville fractional differential equations
    Sahijwani, Lavina
    Sukavanam, Nagarajan
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2023, 13 (01): : 59 - 67
  • [4] Enlarged Controllability of Riemann-Liouville Fractional Differential Equations
    Karite, Touria
    Boutoulout, Ali
    Torres, Delfim F. M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (09):
  • [5] Boundary Controllability of Riemann–Liouville Fractional Semilinear Evolution Systems
    Asmae Tajani
    Fatima-Zahrae El Alaoui
    Journal of Optimization Theory and Applications, 2023, 198 : 767 - 780
  • [6] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    FIXED POINT THEORY, 2012, 13 (02): : 329 - 336
  • [7] On the Approximate Controllability of Fractional Evolution Equations with Generalized Riemann-Liouville Fractional Derivative
    Mahmudov, N. I.
    McKibben, M. A.
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [8] Solvability and Optimal Controls of Semilinear Riemann-Liouville Fractional Differential Equations
    Pan, Xue
    Li, Xiuwen
    Zhao, Jing
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [9] Regional Boundary Observability for Semilinear Fractional Systems with Riemann-Liouville Derivative
    Zguaid, Khalid
    El Alaoui, Fatima Zahrae
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (05) : 420 - 437
  • [10] APPROXIMATE CONTROLLABILITY OF IMPULSIVE RIEMANN-LIOUVILLE FRACTIONAL EQUATIONS IN BANACH SPACES
    Liu, Zhenhai
    Bin, Maojun
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2014, 26 (04) : 527 - 551