Toward the novel AI tasks in infection biology

被引:0
作者
Yakimovich, Artur [1 ,2 ,3 ,4 ,5 ]
机构
[1] Ctr Adv Syst Understanding CASUS, Gorlitz, Germany
[2] Helmholtz Zentrum Dresden Rossendorf eV HZDR, Dresden, Germany
[3] UCL, Dept Renal Med, Div Med, Bladder Infect & Immun Grp BIIG,Royal Free Hosp Ca, London, England
[4] Artificial Intelligence Life Sci CIC, Poole, Dorset, England
[5] Univ Wroclaw, Inst Comp Sci, Wroclaw, Poland
关键词
artificial intelligence; infection biology; deep learning; machine learning; bioimage analysis; host-pathogen interactions; natural language processing;
D O I
10.1128/msphere.00591-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Machine learning and artificial intelligence (AI) are becoming more common in infection biology laboratories around the world. Yet, as they gain traction in research, novel frontiers arise. Novel artificial intelligence algorithms are capable of addressing advanced tasks like image generation and question answering. However, similar algorithms can prove useful in addressing advanced questions in infection biology like prediction of host-pathogen interactions or inferring virus protein conformations. Addressing such tasks requires large annotated data sets, which are often scarce in biomedical research. In this review, I bring together several successful examples where such tasks were addressed. I underline the importance of formulating novel AI tasks in infection biology accompanied by freely available benchmark data sets to address these tasks. Furthermore, I discuss the current state of the field and potential future trends. I argue that one such trend involves AI tools becoming more versatile.
引用
收藏
页数:7
相关论文
共 56 条
[21]  
Gupta V, 2021, ACL-IJCNLP 2021: THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING: PROCEEDINGS OF THE STUDENT RESEARCH WORKSHOP, P292
[22]   A fuzzy-enhanced deep learning approach for early detection of Covid-19 pneumonia from portable chest X-ray images [J].
Ieracitano, Cosimo ;
Mammone, Nadia ;
Versaci, Mario ;
Varone, Giuseppe ;
Ali, Abder-Rahman ;
Armentano, Antonio ;
Calabrese, Grazia ;
Ferrarelli, Anna ;
Turano, Lorena ;
Tebala, Carmela ;
Hussain, Zain ;
Sheikh, Zakariya ;
Sheikh, Aziz ;
Sceni, Giuseppe ;
Hussain, Amir ;
Morabito, Francesco Carlo .
NEUROCOMPUTING, 2022, 481 :202-215
[23]   Holographic deep learning for rapid optical screening of anthrax spores [J].
Jo, YoungJu ;
Park, Sangjin ;
Jung, JaeHwang ;
Yoon, Jonghee ;
Joo, Hosung ;
Kim, Min-Hyeok ;
Kang, Suk-Jo ;
Choi, Myung Chul ;
Lee, Sang Yup ;
Park, YongKeun .
SCIENCE ADVANCES, 2017, 3 (08)
[24]   Highly accurate protein structure prediction with AlphaFold [J].
Jumper, John ;
Evans, Richard ;
Pritzel, Alexander ;
Green, Tim ;
Figurnov, Michael ;
Ronneberger, Olaf ;
Tunyasuvunakool, Kathryn ;
Bates, Russ ;
Zidek, Augustin ;
Potapenko, Anna ;
Bridgland, Alex ;
Meyer, Clemens ;
Kohl, Simon A. A. ;
Ballard, Andrew J. ;
Cowie, Andrew ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Jain, Rishub ;
Adler, Jonas ;
Back, Trevor ;
Petersen, Stig ;
Reiman, David ;
Clancy, Ellen ;
Zielinski, Michal ;
Steinegger, Martin ;
Pacholska, Michalina ;
Berghammer, Tamas ;
Bodenstein, Sebastian ;
Silver, David ;
Vinyals, Oriol ;
Senior, Andrew W. ;
Kavukcuoglu, Koray ;
Kohli, Pushmeet ;
Hassabis, Demis .
NATURE, 2021, 596 (7873) :583-+
[25]   ML-AdVInfect: A Machine-Learning Based Adenoviral Infection Predictor [J].
Karabulut, Onur Can ;
Karpuzcu, Betul Asiye ;
Turk, Erdem ;
Ibrahim, Ahmad Hassan ;
Suzek, Baris Ethem .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
[26]   Chest X-ray Classification for the Detection of COVID-19 Using Deep Learning Techniques [J].
Khan, Ejaz ;
Rehman, Muhammad Zia Ur ;
Ahmed, Fawad ;
Alfouzan, Faisal Abdulaziz ;
Alzahrani, Nouf M. ;
Ahmad, Jawad .
SENSORS, 2022, 22 (03)
[27]  
Koksal A., 2020, ASS COMPUTATIONAL LI
[28]  
Kreis K., 2022, LATENT SPACE DIFFUSI, DOI DOI 10.48550/ARXIV.2211.14169
[29]   Multiscale PHATE identifies multimodal signatures of COVID-19 [J].
Kuchroo, Manik ;
Huang, Jessie ;
Wong, Patrick ;
Grenier, Jean-Christophe ;
Shung, Dennis ;
Tong, Alexander ;
Lucas, Carolina ;
Klein, Jon ;
Burkhardt, Daniel B. ;
Gigante, Scott ;
Godavarthi, Abhinav ;
Rieck, Bastian ;
Israelow, Benjamin ;
Simonov, Michael ;
Mao, Tianyang ;
Oh, Ji Eun ;
Silva, Julio ;
Takahashi, Takehiro ;
Odio, Camila D. ;
Casanovas-Massana, Arnau ;
Farhadian, Shelli ;
Dela Cruz, Charles S. ;
Ko, Albert I. ;
Hirn, Matthew J. ;
Wilson, F. Perry ;
Hussin, Julie G. ;
Wolf, Guy ;
Iwasaki, Akiko ;
Krishnaswamy, Smita .
NATURE BIOTECHNOLOGY, 2022, 40 (05) :681-+
[30]   Backpropagation Applied to Handwritten Zip Code Recognition [J].
LeCun, Y. ;
Boser, B. ;
Denker, J. S. ;
Henderson, D. ;
Howard, R. E. ;
Hubbard, W. ;
Jackel, L. D. .
NEURAL COMPUTATION, 1989, 1 (04) :541-551