Finite-size effects in periodic coupled cluster calculations

被引:2
|
作者
Xing, Xin [1 ]
Lin, Lin [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Appl Math & Computat Res Div, Berkeley, CA 94720 USA
关键词
Finite-size effects; Coupled cluster theory; Quadrature error estimate; Algebraic singularity; CORRELATION-ENERGY; BAND-STRUCTURE; SOLIDS;
D O I
10.1016/j.jcp.2024.112755
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We provide the first rigorous study of the finite-size error in the simplest and representative coupled cluster theory, namely the coupled cluster doubles (CCD) theory, for gapped periodic systems. Given exact Hartree-Fock orbitals and their corresponding orbital energies, we demonstrate that the correlation energy obtained from the approximate CCD method, after a finite number of fixed-point iterations over the amplitude equation, exhibits a finite-size error scaling as O(N-k(-1/3)). Here N-k is the number of discretization points in the Brillouin zone and characterizes the system size. Under additional assumptions ensuring the convergence of the fixed-point iterations, we demonstrate that the CCD correlation energy also exhibits a finite-size 1 error scaling as O(N-k(-1/3)). Our analysis shows that the dominant error lies in the coupled cluster amplitude calculation, and the convergence of the finite-size error in energy calculation can be boosted to O(N-k(-1)) with accurate amplitudes. This also provides the first proof of the scaling of the finite-size error in the third order Moller-Plesset perturbation theory (MP3) for periodic systems.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Inverse Volume Scaling of Finite-Size Error in Periodic Coupled Cluster Theory
    Xing, Xin
    Lin, Lin
    PHYSICAL REVIEW X, 2024, 14 (01)
  • [2] Finite-size correction in many-body electronic structure calculations of magnetic systems
    Ma, Fengjie
    Zhang, Shiwei
    Krakauer, Henry
    PHYSICAL REVIEW B, 2011, 84 (15):
  • [3] Systematic study of finite-size effects in quantum Monte Carlo calculations of real metallic systems
    Azadi, Sam
    Foulkes, W. M. C.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (10)
  • [4] Finite-size effects in disordered λφ4 model
    Acosta Diaz, R.
    Svaiter, N. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (30):
  • [5] Finite-size effects in hyperuniform vortex matter
    Milagros Besana, Rocio
    Elias, Federico
    Puig, Joaquin
    Aragon Sanchez, Jazmin
    Nieva, Gladys
    Benedykt Kolton, Alejandro
    Fasano, Yanina
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (28)
  • [6] Finite-Size Effects in Periodic EOM-CCSD for Ionization Energies and Electron Affinities: Convergence Rate and Extrapolation to the Thermodynamic Limit
    Moerman, Evgeny
    Gallo, Alejandro
    Irmler, Andreas
    Schaefer, Tobias
    Hummel, Felix
    Grueneis, Andreas
    Scheffler, Matthias
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025, 21 (04) : 1865 - 1878
  • [7] Finite-Size Effects in Simulations of Peptide/Lipid Assembly
    Zack Jarin
    Olivia Agolini
    Richard W. Pastor
    The Journal of Membrane Biology, 2022, 255 : 437 - 449
  • [8] Particle transport and finite-size effects in Lorentz channels with finite horizons
    Cirillo, Emilio N. M.
    Colangeli, Matteo
    Kroger, Martin
    Rondoni, Lamberto
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [9] Finite-Size Effects in Simulations of Peptide/Lipid Assembly
    Jarin, Zack
    Agolini, Olivia
    Pastor, Richard W.
    JOURNAL OF MEMBRANE BIOLOGY, 2022, 255 (4-5) : 437 - 449
  • [10] UNIFIED ANALYSIS OF FINITE-SIZE ERROR FOR PERIODIC HARTREE-FOCK AND SECOND ORDER MoLLER-PLESSET PERTURBATION THEORY
    Xing, Xin
    Li, Xiaoxu
    Lin, Lin
    MATHEMATICS OF COMPUTATION, 2023, : 679 - 727