Enrichment of lung cancer computed tomography collections with AI-derived annotations

被引:2
作者
Krishnaswamy, Deepa [1 ]
Bontempi, Dennis [2 ,3 ]
Thiriveedhi, Vamsi Krishna [1 ]
Punzo, Davide [4 ]
Clunie, David [5 ]
Bridge, Christopher P. [6 ]
Aerts, Hugo J. W. L. [2 ,3 ,7 ]
Kikinis, Ron [1 ]
Fedorov, Andrey [1 ]
机构
[1] Brigham & Womens Hosp, Boston, MA 02115 USA
[2] Harvard Med Sch, Artificial Intelligence Med AIM Program, Mass Gen Brigham, Boston, MA USA
[3] Maastricht Univ, Radiol & Nucl Med, CARIM & GROW, Maastricht, Netherlands
[4] Rad Imaging, Boston, MA USA
[5] PixelMed Publishing, Bangor, PA USA
[6] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[7] Harvard Med Sch, Dana Farber Canc Inst, Brigham & Womens Hosp, Dept Radiat Oncol, Boston, MA USA
基金
美国国家卫生研究院;
关键词
DICOM;
D O I
10.1038/s41597-023-02864-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Public imaging datasets are critical for the development and evaluation of automated tools in cancer imaging. Unfortunately, many do not include annotations or image-derived features, complicating downstream analysis. Artificial intelligence-based annotation tools have been shown to achieve acceptable performance and can be used to automatically annotate large datasets. As part of the effort to enrich public data available within NCI Imaging Data Commons (IDC), here we introduce AI-generated annotations for two collections containing computed tomography images of the chest, NSCLC-Radiomics, and a subset of the National Lung Screening Trial. Using publicly available AI algorithms, we derived volumetric annotations of thoracic organs-at-risk, their corresponding radiomics features, and slice-level annotations of anatomical landmarks and regions. The resulting annotations are publicly available within IDC, where the DICOM format is used to harmonize the data and achieve FAIR (Findable, Accessible, Interoperable, Reusable) data principles. The annotations are accompanied by cloud-enabled notebooks demonstrating their use. This study reinforces the need for large, publicly accessible curated datasets and demonstrates how AI can aid in cancer imaging.
引用
收藏
页数:15
相关论文
共 29 条
  • [1] Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening
    Aberle, Denise R.
    Adams, Amanda M.
    Berg, Christine D.
    Black, William C.
    Clapp, Jonathan D.
    Fagerstrom, Richard M.
    Gareen, Ilana F.
    Gatsonis, Constantine
    Marcus, Pamela M.
    Sicks, JoRean D.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) : 395 - 409
  • [2] Aerts Hugo J W L, 2019, TCIA
  • [3] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [4] The Medical Segmentation Decathlon
    Antonelli, Michela
    Reinke, Annika
    Bakas, Spyridon
    Farahani, Keyvan
    Kopp-Schneider, Annette
    Landman, Bennett A.
    Litjens, Geert
    Menze, Bjoern
    Ronneberger, Olaf
    Summers, Ronald M.
    van Ginneken, Bram
    Bilello, Michel
    Bilic, Patrick
    Christ, Patrick F.
    Do, Richard K. G.
    Gollub, Marc J.
    Heckers, Stephan H.
    Huisman, Henkjan
    Jarnagin, William R.
    McHugo, Maureen K.
    Napel, Sandy
    Pernicka, Jennifer S. Golia
    Rhode, Kawal
    Tobon-Gomez, Catalina
    Vorontsov, Eugene
    Meakin, James A.
    Ourselin, Sebastien
    Wiesenfarth, Manuel
    Arbelaez, Pablo
    Bae, Byeonguk
    Chen, Sihong
    Daza, Laura
    Feng, Jianjiang
    He, Baochun
    Isensee, Fabian
    Ji, Yuanfeng
    Jia, Fucang
    Kim, Ildoo
    Maier-Hein, Klaus
    Merhof, Dorit
    Pai, Akshay
    Park, Beomhee
    Perslev, Mathias
    Rezaiifar, Ramin
    Rippel, Oliver
    Sarasua, Ignacio
    Shen, Wei
    Son, Jaemin
    Wachinger, Christian
    Wang, Liansheng
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Understanding and using DICOM, the data interchange standard for biomedical imaging
    Bidgood, WD
    Horii, SC
    Prior, FW
    VanSyckle, DE
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1997, 4 (03) : 199 - 212
  • [6] Highdicom: a Python']Python Library for Standardized Encoding of Image Annotations and Machine Learning Model Outputs in Pathology and Radiology
    Bridge, Christopher P.
    Gorman, Chris
    Pieper, Steven
    Doyle, Sean W.
    Lennerz, Jochen K.
    Kalpathy-Cramer, Jayashree
    Clunie, David A.
    Fedorov, Andriy Y.
    Herrmann, Markus D.
    [J]. JOURNAL OF DIGITAL IMAGING, 2022, 35 (06) : 1719 - 1737
  • [7] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [8] Doherty D., 2012, Canadian Journal of Anesthesia/Journal canadien d'anesthesie, V59, P427, DOI DOI 10.1007/S12630-011-9665-5
  • [9] National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence
    Fedorov, Andrey
    Longabaugh, William J. R.
    Pot, David
    Clunie, David A.
    Pieper, Steven D.
    Gibbs, David L.
    Bridge, Christopher
    Herrmann, Markus D.
    Homeyer, Andre
    Lewis, Rob
    Aerts, Hugo J. W. L.
    Krishnaswamy, Deepa
    Thiriveedhi, Vamsi Krishna
    Ciausu, Cosmin
    Schacherer, Daniela P.
    Bontempi, Dennis
    Pihl, Todd
    Wagner, Ulrike
    Farahani, Keyvan
    Kim, Erika
    Kikinis, Ron
    [J]. RADIOGRAPHICS, 2023, 43 (12)
  • [10] 3D Slicer as an image computing platform for the Quantitative Imaging Network
    Fedorov, Andriy
    Beichel, Reinhard
    Kalpathy-Cramer, Jayashree
    Finet, Julien
    Fillion-Robin, Jean-Christophe
    Pujol, Sonia
    Bauer, Christian
    Jennings, Dominique
    Fennessy, Fiona
    Sonka, Milan
    Buatti, John
    Aylward, Stephen
    Miller, James V.
    Pieper, Steve
    Kikinis, Ron
    [J]. MAGNETIC RESONANCE IMAGING, 2012, 30 (09) : 1323 - 1341