Realizing the potential of deep neural network for analyzing neutron star observables and dense matter equation of state

被引:7
作者
Thete, Ameya [1 ]
Banerjee, Kinjal [1 ]
Malik, Tuhin [2 ]
机构
[1] BITS Pilani, Dept Phys, KK Birla Goa Campus, Zuarinagar 403726, Goa, India
[2] Univ Coimbra, Dept Phys, CFisUC, P-3004516 Coimbra, Portugal
关键词
GEOMETRIC MEASUREMENTS; BAYESIAN-INFERENCE; MASS; RADIUS;
D O I
10.1103/PhysRevD.108.063028
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The difficulty in describing the equation of state (EOS) for nuclear matter at densities above the saturation density (p0) has led to the emergence of a multitude of models based on different assumptions and techniques. These equations of state, when used to describe a neutron star (NS), lead to differing values of observables. An outstanding goal in astrophysics is to constrain the dense matter EOS by exploiting astrophysical and gravitational wave measurements. Nuclear matter parameters appear as Taylor coefficients in the expansion of the EOS around the saturation density of symmetric and asymmetric nuclear matter and provide a physically motivated representation of the EOS. In this paper, we introduce a deep learning-based methodology to predict key neutron stars observables such as the NS mass, NS radius, and tidal deformability from a set of nuclear matter parameters. Using generated mock data, we confirm that the neural network model is able to accurately capture the underlying physics of finite nuclei and replicate intercorrelations between the symmetry energy slope, its curvature, and the tidal deformability arising from a set of physical constraints. We also test our network with mock data generated by a different class of physics model, which was not part of the training, to explore the limitations of model dependency in the results. We also study the validity of our trained model using Bayesian inference and show that the performance of our model is on par with physics-based models with the added benefit of much lower computational cost.
引用
收藏
页数:15
相关论文
共 98 条
  • [1] Introductory lectures on lattice QCD at nonzero baryon number
    Aarts, Gert
    [J]. XIII INTERNATIONAL WORKSHOP ON HADRON PHYSICS, SECTIONS 1-5, 2016, 706
  • [2] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [3] On the Sound Speed in Neutron Stars
    Altiparmak, Sinan
    Ecker, Christian
    Rezzolla, Luciano
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2022, 939 (02)
  • [4] Multimessenger Constraints for Ultradense Matter
    Annala, Eemeli
    Gorda, Tyler
    Katerini, Evangelia
    Kurkela, Aleksi
    Nattila, Joonas
    Paschalidis, Vasileios
    Vuorinen, Aleksi
    [J]. PHYSICAL REVIEW X, 2022, 12 (01)
  • [5] Evidence for quark-matter cores in massive neutron stars
    Annala, Eemeli
    Gorda, Tyler
    Kurkela, Aleksi
    Nattila, Joonas
    Vuorinen, Aleksi
    [J]. NATURE PHYSICS, 2020, 16 (09) : 907 - +
  • [6] A Massive Pulsar in a Compact Relativistic Binary
    Antoniadis, John
    Freire, Paulo C. C.
    Wex, Norbert
    Tauris, Thomas M.
    Lynch, Ryan S.
    van Kerkwijk, Marten H.
    Kramer, Michael
    Bassa, Cees
    Dhillon, Vik S.
    Driebe, Thomas
    Hessels, Jason W. T.
    Kaspi, Victoria M.
    Kondratiev, Vladislav I.
    Langer, Norbert
    Marsh, Thomas R.
    McLaughlin, Maura A.
    Pennucci, Timothy T.
    Ransom, Scott M.
    Stairs, Ingrid H.
    van Leeuwen, Joeri
    Verbiest, Joris P. W.
    Whelan, David G.
    [J]. SCIENCE, 2013, 340 (6131) : 448
  • [7] The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars
    Arzoumanian, Zaven
    Brazier, Adam
    Burke-Spolaor, Sarah
    Chamberlin, Sydney
    Chatterjee, Shami
    Christy, Brian
    Cordes, James M.
    Cornish, Neil J.
    Crawford, Fronefield
    Cromartie, H. Thankful
    Crowter, Kathryn
    DeCesar, Megan E.
    Demorest, Paul B.
    Dolch, Timothy
    Ellis, Justin A.
    Ferdman, Robert D.
    Ferrara, Elizabeth C.
    Fonseca, Emmanuel
    Garver-Daniels, Nathan
    Gentile, Peter A.
    Halmrast, Daniel
    Huerta, E. A.
    Jenet, Fredrick A.
    Jessup, Cody
    Jones, Glenn
    Jones, Megan L.
    Kaplan, David L.
    Lam, Michael T.
    Lazio, T. Joseph W.
    Levin, Lina
    Lommen, Andrea
    Lorimer, Duncan R.
    Luo, Jing
    Lynch, Ryan S.
    Madison, Dustin
    Matthews, Allison M.
    McLaughlin, Maura A.
    McWilliams, Sean T.
    Mingarelli, Chiara
    Ng, Cherry
    Nice, David J.
    Pennucci, Timothy T.
    Ransom, Scott M.
    Ray, Paul S.
    Siemens, Xavier
    Simon, Joseph
    Spiewak, Renee
    Stairs, Ingrid H.
    Stinebring, Daniel R.
    Stovall, Kevin
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2018, 235 (02)
  • [8] BILBY: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy
    Ashton, Gregory
    Hubner, Moritz
    Lasky, Paul D.
    Talbot, Colm
    Ackley, Kendall
    Biscoveanu, Sylvia
    Chu, Qi
    Divakarla, Atul
    Easter, Paul J.
    Goncharov, Boris
    Vivanco, Francisco Hernandez
    Harms, Jan
    Lower, Marcus E.
    Meadors, Grant D.
    Melchor, Denyz
    Payne, Ethan
    Pitkin, Matthew D.
    Powel, Jade
    Sarin, Nikhil
    Smith, Rory J. E.
    Thrane, Eric
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2019, 241 (02)
  • [9] Bedaque P, 2020, Arxiv, DOI arXiv:2006.05422
  • [10] Machine and deep learning applications in particle physics
    Bourilkov, Dimitri
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (35):