Spatio-temporal principal component analysis

被引:8
作者
Krzysko, Miroslaw [1 ]
Nijkamp, Peter [2 ,3 ]
Ratajczak, Waldemar [4 ]
Wolynski, Waldemar [5 ]
Wenerska, Beata [1 ]
机构
[1] Calis Univ Kalisz, Fac Social Sci, Kalisz, Poland
[2] Open Univ, Fac Management, Heerlen, Netherlands
[3] Alexandru Ioan Cuza Univ, Ctr European Studies, Iasi, Romania
[4] Adam Mickiewicz Univ, Fac Socioecon Geog & Spatial Management, Poznan, Poland
[5] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
关键词
Spatio-temporal data; multivariate analysis; spatio-temporal principal components; Moran's I index; functional data; spatial weights; NEGATIVE SPATIAL AUTOCORRELATION; PATTERNS;
D O I
10.1080/17421772.2023.2237532
中图分类号
F [经济];
学科分类号
02 ;
摘要
Principal component analysis (PCA) is a well-established research approach extensively utilised in the quantitative social sciences. The primary objective of the present study is to devise and evaluate a novel methodology that effectively addresses the mathematical and statistical treatment of spatio-temporal dependencies among multivariate datasets within PCA. This approach builds upon recent advancements in multifunctional PCA. The study aims to optimise the product of the variance of functional principal components and the Moran's I index, thereby enhancing the analytical framework. Both simulation studies and a real example show that positive spatio-temporal principal components should be constructed using a distance-based spatial weight matrix, and negative ones using a border-length-based spatial weight matrix.
引用
收藏
页码:8 / 29
页数:22
相关论文
共 50 条
  • [21] Suitability of Graph Database Technology for the Analysis of Spatio-Temporal Data
    Effendi, Sedick Baker
    van der Merwe, Brink
    Balke, Wolf-Tilo
    FUTURE INTERNET, 2020, 12 (05):
  • [22] Bayesian spatio-temporal analysis of dengue transmission in Lao PDR
    Soukavong, Mick
    Thinkhamrop, Kavin
    Pratumchart, Khanittha
    Soulaphy, Chanthavy
    Xangsayarath, Phonepadith
    Mayxay, Mayfong
    Phommachanh, Sysavanh
    Kelly, Matthew
    Wangdi, Kinley
    Clements, Archie C. A.
    Suwannatrai, Apiporn T.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [23] Multi-scale spatio-temporal analysis of human mobility
    Alessandretti, Laura
    Sapiezynski, Piotr
    Lehmann, Sune
    Baronchelli, Andrea
    PLOS ONE, 2017, 12 (02):
  • [24] Hierarchical Spatio-Temporal Change-Point Detection
    Moradi, Mehdi
    Cronie, Ottmar
    Perez-Goya, Unai
    Mateu, Jorge
    AMERICAN STATISTICIAN, 2023, 77 (04) : 390 - 400
  • [25] Fire Detection Based on Fractal Analysis and Spatio-Temporal Features
    Torabian, Monir
    Pourghassem, Hossein
    Mahdavi-Nasab, Homayoun
    FIRE TECHNOLOGY, 2021, 57 (05) : 2583 - 2614
  • [26] Variable Selection Мethod based on Spatio-temporal Group Lasso and Нierarchical Bayesian Spatio-temporal Мodel
    Wang L.
    Kang Z.
    Journal of Geo-Information Science, 2023, 25 (07) : 1312 - 1324
  • [27] A Spatio-temporal Data Compression Algorithm
    Wang, Lei
    Guo, Yiming
    Chen, Chen
    Yan, Yaowei
    2012 FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY (MINES 2012), 2012, : 421 - 424
  • [28] On spatio-temporal blockchain query processing
    Qu, Qiang
    Nurgaliev, Ildar
    Muzammal, Muhammad
    Jensen, Christian S.
    Fan, Jianping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 98 : 208 - 218
  • [29] Integration of Spatio-Temporal Data in a DBMS
    Abd Rahim, Yahaya
    Sahib, Shahrin
    Mastura, Siti
    2010 SECOND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS: ICCEA 2010, PROCEEDINGS, VOL 2, 2010, : 384 - 388
  • [30] SPATIO-TEMPORAL ESTIMATION OF WILDFIRE GROWTH
    Sharma, Balaji R.
    Kumar, Manish
    Cohen, Kelly
    ASME 2013 DYNAMIC SYSTEMS AND CONTROL CONFERENCE, VOL 2, 2013,