Spatio-temporal principal component analysis

被引:8
|
作者
Krzysko, Miroslaw [1 ]
Nijkamp, Peter [2 ,3 ]
Ratajczak, Waldemar [4 ]
Wolynski, Waldemar [5 ]
Wenerska, Beata [1 ]
机构
[1] Calis Univ Kalisz, Fac Social Sci, Kalisz, Poland
[2] Open Univ, Fac Management, Heerlen, Netherlands
[3] Alexandru Ioan Cuza Univ, Ctr European Studies, Iasi, Romania
[4] Adam Mickiewicz Univ, Fac Socioecon Geog & Spatial Management, Poznan, Poland
[5] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
关键词
Spatio-temporal data; multivariate analysis; spatio-temporal principal components; Moran's I index; functional data; spatial weights; NEGATIVE SPATIAL AUTOCORRELATION; PATTERNS;
D O I
10.1080/17421772.2023.2237532
中图分类号
F [经济];
学科分类号
02 ;
摘要
Principal component analysis (PCA) is a well-established research approach extensively utilised in the quantitative social sciences. The primary objective of the present study is to devise and evaluate a novel methodology that effectively addresses the mathematical and statistical treatment of spatio-temporal dependencies among multivariate datasets within PCA. This approach builds upon recent advancements in multifunctional PCA. The study aims to optimise the product of the variance of functional principal components and the Moran's I index, thereby enhancing the analytical framework. Both simulation studies and a real example show that positive spatio-temporal principal components should be constructed using a distance-based spatial weight matrix, and negative ones using a border-length-based spatial weight matrix.
引用
收藏
页码:8 / 29
页数:22
相关论文
共 50 条
  • [1] Spatio-temporal principal component analysis
    Krzysko, Miroslaw
    Nijkamp, Peter
    Ratajczak, Waldemar
    Wolynski, Waldemar
    Wenerska, Beata
    SPATIAL ECONOMIC ANALYSIS, 2023,
  • [2] A novel Spatio-temporal principal component analysis based on Geary's contiguity ratio
    Krzys, Miroslaw
    Nijkamp, Peter
    Ratajczak, Waldemar
    Wolynski, Waldemar
    Wojtyla, Andrzej
    Wenerska, Beata
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2023, 103
  • [3] Spatio-temporal analysis of the Brantas river water quality status by using principal component weighted index (PCWI)
    Lusiana, Evellin Dewi
    Mahmudi, Mohammad
    Musa, Muhammad
    Primadhita, Maria Alfonsa Okta
    Putra, Syahrijal
    Silalahi, Jumpa Priodi
    Sunadji
    Buwono, Nanik Retno
    ECOLOGICAL QUESTIONS, 2023, 34 (03)
  • [4] Spatio-Temporal Analysis of Team Sports
    Gudmundsson, Joachim
    Horton, Michael
    ACM COMPUTING SURVEYS, 2017, 50 (02)
  • [5] Crime in India: a spatio-temporal analysis
    Kabiraj, Pintu
    GEOJOURNAL, 2023, 88 (02) : 1283 - 1304
  • [6] Nonlinear PCA for Spatio-Temporal Analysis of Earth Observation Data
    Bueso, Diego
    Piles, Maria
    Camps-Valls, Gustau
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5752 - 5763
  • [7] Spatio-temporal analysis of forest modeling in Mexico
    Martinez-Santiago, Saira Y.
    Alvarado-Segura, Arturo A.
    Zamudio-Sanchez, Francisco J.
    Cristobal-Acevedo, David
    REVISTA CHAPINGO SERIE CIENCIAS FORESTALES Y DEL AMBIENTE, 2017, 23 (01) : 5 - 22
  • [8] A spatio-temporal analysis of suicide in El Salvador
    Carcach, Carlos
    BMC PUBLIC HEALTH, 2017, 17
  • [9] Spatio-temporal Aggregation for Visual Analysis of Movements
    Andrienko, Gennady
    Andrienko, Natalia
    IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2008, PROCEEDINGS, 2008, : 51 - 58
  • [10] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Lindstrom, Johan
    Szpiro, Adam A.
    Sampson, Paul D.
    Oron, Assaf P.
    Richards, Mark
    Larson, Tim V.
    Sheppard, Lianne
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 411 - 433