On some inequalities for numerical radius of semi-Hilbert space multioperators

被引:0
|
作者
Guesba, Messaoud [1 ]
Mahmoud, Sid Ahmed Ould Ahmed [2 ]
机构
[1] El Oued Univ, Fac Exact Sci, Dept Math, El Oued 39000, Algeria
[2] Jouf Univ, Coll Sci, Math Dept, POB 2014, Sakaka, Saudi Arabia
关键词
A-numerical radius; -joint numerical radius; A-normal m-tuple; inequalities; semi-Hilbert space; PARTIAL ISOMETRIES; LOWER BOUNDS; OPERATORS;
D O I
10.1515/gmj-2023-2057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we aim to introduce new inequalities of the m-tuples of semi-Hilbert space operators. These inequalities, which are based on some numerical radius inequalities due to Dragomir et al. for a single operator on a Hilbert space. Further, we give a new formula of the A-Euclidean operator semi-norm of m-tuples of operators on a semi-Hilbert space.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 50 条
  • [21] Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators
    Bhunia, Pintu
    Nayak, Raj Kumar
    Paul, Kallol
    RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [22] REFINEMENT OF SEMINORM AND NUMERICAL RADIUS INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS
    Bhunia, Pintu
    Nayak, Raj Kumar
    Paul, Kallol
    MATHEMATICA SLOVACA, 2022, 72 (04) : 969 - 976
  • [23] On the numerical radius of the product of Hilbert space operators
    Kittaneh, Fuad
    Moradi, Hamid Reza
    Sababheh, Mohammad
    HOKKAIDO MATHEMATICAL JOURNAL, 2024, 53 (03) : 395 - 420
  • [24] A-numerical radius and A-norm inequalities for semi-Hilbertian space operators
    Qiao, Hongwei
    Hai, Guojun
    Bai, Eburilitu
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21) : 6891 - 6907
  • [25] IMPROVED INEQUALITIES FOR OPERATOR SPACE NUMERICAL RADIUS
    Aghideh, M. Gaderi
    Moslehian, M. S.
    Rooin, J.
    MATHEMATICAL REPORTS, 2022, 24 (03): : 553 - 569
  • [26] SHARPENING SOME CLASSICAL NUMERICAL RADIUS INEQUALITIES
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    Shebrawi, Khalid
    OPERATORS AND MATRICES, 2018, 12 (02): : 407 - 416
  • [27] AN ALTERNATIVE ESTIMATE FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    Moradi, Hamid Reza
    MATHEMATICA SLOVACA, 2020, 70 (01) : 233 - 237
  • [28] Another generalization of the numerical radius for Hilbert space operators
    Zamani, Ali
    Wojcik, Pawel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 114 - 128
  • [29] ON THE ESTIMATION OF q -NUMERICAL RADIUS OF HILBERT SPACE OPERATORS
    Atra, Arnab
    Roy, Alguni
    OPERATORS AND MATRICES, 2024, 18 (02): : 343 - 359
  • [30] Upper Bounds for the Numerical Radius of Hilbert Space Operators
    Jaafari, Elahe
    Asgari, Mohammad Sadegh
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (02) : 237 - 245