Quantum process tomography with unsupervised learning and tensor networks

被引:23
作者
Torlai, Giacomo [1 ,2 ]
Wood, Christopher J. [3 ]
Acharya, Atithi [2 ,4 ]
Carleo, Giuseppe [2 ,5 ]
Carrasquilla, Juan [6 ]
Aolita, Leandro [7 ,8 ]
机构
[1] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[2] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[3] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[4] Rutgers State Univ, Phys & Astron Dept, Piscataway, NJ 08854 USA
[5] Ecole Polytechn Federale Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland
[6] MaRS Ctr, Vector Inst, Toronto, ON M5G 1M1, Canada
[7] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[8] Univ Fed Rio de Janeiro, Inst Fis, POB 68528, BR-21941972 Rio De Janeiro, Brazil
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
DYNAMICS; STATES;
D O I
10.1038/s41467-023-38332-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The impressive pace of advance of quantum technology calls for robust and scalable techniques for the characterization and validation of quantum hardware. Quantum process tomography, the reconstruction of an unknown quantum channel from measurement data, remains the quintessential primitive to completely characterize quantum devices. However, due to the exponential scaling of the required data and classical post-processing, its range of applicability is typically restricted to one- and two-qubit gates. Here, we present a technique for performing quantum process tomography that addresses these issues by combining a tensor network representation of the channel with a data-driven optimization inspired by unsupervised machine learning. We demonstrate our technique through synthetically generated data for ideal one- and two-dimensional random quantum circuits of up to 10 qubits, and a noisy 5-qubit circuit, reaching process fidelities above 0.99 using several orders of magnitude fewer (single-qubit) measurement shots than traditional tomographic techniques. Our results go far beyond state-of-the-art, providing a practical and timely tool for benchmarking quantum circuits in current and near-term quantum computers.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Quantum process tomography by 2D fluorescence spectroscopy
    Pachon, Leonardo A.
    Marcus, Andrew H.
    Aspuru-Guzik, Alan
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (21)
  • [32] Subspace quantum process tomography via nuclear magnetic resonance
    Yao Xi-Wei
    Zeng Bi-Rong
    Liu Qin
    Mu Xiao-Yang
    Lin Xing-Cheng
    Yang Chun
    Pan Jian
    Chen Zhong
    ACTA PHYSICA SINICA, 2010, 59 (10) : 6837 - 6841
  • [33] Process tomography via sequential measurements on a single quantum system
    Bassa, Humairah
    Goyal, Sandeep K.
    Choudhary, Sujit K.
    Uys, Hermann
    Diosi, Lajos
    Konrad, Thomas
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [34] Discovering deposition process regimes: Leveraging unsupervised learning for process insights, surrogate modeling, and sensitivity analysis
    Loachamin-Suntaxi, Geremy
    Papavasileiou, Paris
    Koronaki, Eleni D.
    Giovanis, Dimitrios G.
    Gakis, Georgios
    Aviziotis, Ioannis G.
    Kathrein, Martin
    Pozzetti, Gabriele
    Czettl, Christoph
    Bordas, Stephane P. A.
    Boudouvis, Andreas G.
    CHEMICAL ENGINEERING JOURNAL ADVANCES, 2024, 20
  • [35] Tomography of time-dependent quantum Hamiltonians with machine learning
    Han, Chen-Di
    Glaz, Bryan
    Haile, Mulugeta
    Lai, Ying-Cheng
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [36] Quantum contact process on scale-free networks
    Jhun, Bukyoung
    Jo, Minjae
    Kahng, B.
    CHAOS SOLITONS & FRACTALS, 2022, 160
  • [37] Collisional open quantum dynamics with a generally correlated environment: Exact solvability in tensor networks
    Filippov, Sergey N.
    Luchnikov, Ilia A.
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [38] Comb tensor networks
    Chepiga, Natalia
    White, Steven R.
    PHYSICAL REVIEW B, 2019, 99 (23)
  • [39] Extended quantum process tomography of logical operations on an encoded bosonic qubit
    Kervinen, Mikael
    Ahmed, Shahnawaz
    Kudra, Marina
    Eriksson, Axel
    Quijandria, Fernando
    Kockum, Anton Frisk
    Delsing, Per
    Gasparinetti, Simone
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [40] Wigner state and process tomography on near-term quantum devices
    Devra, Amit
    Glaser, Niklas J.
    Huber, Dennis
    Glaser, Steffen J.
    QUANTUM INFORMATION PROCESSING, 2024, 23 (10)