Fast block Krylov subspace methods for solving sequences of dense MoM linear systems with multiple right-hand sides

被引:1
|
作者
Carpentieri, Bruno [1 ]
Sun, Dong-Lin [2 ]
Huang, Ting-Zhu [3 ]
Jing, Yan-Fei [4 ]
Tavelli, Maurizio [1 ]
机构
[1] Free Univ Bozen Bolzano, I-39100 Bolzano, Italy
[2] Changan Univ, Xian 710072, Shaanxi, Peoples R China
[3] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
[4] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
来源
2023 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION, NEMO | 2023年
关键词
Integral equations; linear systems; iterative methods; multiple right-hand sides; preconditioners; deflation;
D O I
10.1109/NEMO56117.2023.10202284
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For the simultaneous solution of sequences of linear systems with multiple right-hand sides that result from the discretization of boundary integral equations using the Method of Moments, we show experiments using a robust variant of the block GMRES method. To address memory concerns and improve the convergence of block GMRES, the method combines an initial deflation strategy of the set of right-hand sides with an eigenvalue recycling technique. Experiments are presented to prove the method's potential for solving many right-hand side linear systems efficiently, which can sometimes be the computational bottleneck in integral equation-based engineering applications.
引用
收藏
页码:5 / 8
页数:4
相关论文
共 50 条
  • [1] Matrix Krylov subspace methods for linear systems with multiple right-hand sides
    M. Heyouni
    A. Essai
    Numerical Algorithms, 2005, 40 : 137 - 156
  • [2] Matrix Krylov subspace methods for linear systems with multiple right-hand sides
    Heyouni, M
    Essai, A
    NUMERICAL ALGORITHMS, 2005, 40 (02) : 137 - 156
  • [3] BLOCK KRYLOV SUBSPACE RECYCLING FOR SHIFTED SYSTEMS WITH UNRELATED RIGHT-HAND SIDES
    Soodhalter, Kirk M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01): : A302 - A324
  • [4] Analysis of projection methods for solving linear systems with multiple right-hand sides
    Chan, TF
    Wan, WL
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06): : 1698 - 1721
  • [5] PRECONDITIONED GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING SADDLE POINT PROBLEMS WITH MULTIPLE RIGHT-HAND SIDES
    Badahmane, A.
    Bentbib, A. H.
    Sadok, H.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2019, 51 : 495 - 511
  • [6] The block least squares method for solving nonsymmetric linear systems with multiple right-hand sides
    Karimi, S.
    Toutounian, F.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (02) : 852 - 862
  • [7] The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides
    Amini, S.
    Toutounian, F.
    Gachpazan, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 : 166 - 174
  • [8] Oblique projection methods for linear systems with multiple right-hand sides
    Jbilou, K
    Sadok, H
    Tinzefte, A
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 20 : 119 - 138
  • [9] Block Variants of the COCG and COCR Methods for Solving Complex Symmetric Linear Systems with Multiple Right-Hand Sides
    Gu, Xian-Ming
    Carpentieri, Bruno
    Huang, Ting-Zhu
    Meng, Jing
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 305 - 313
  • [10] A seed method for solving nonsymmetric linear systems with multiple right-hand sides
    Gu, GD
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (03) : 307 - 326