Existence and Stability of Standing Spot Solutions in a Three-Component FitzHugh-Nagumo System in R2

被引:0
|
作者
Ikeda, Hideo [1 ]
机构
[1] Univ Toyama, Dept Math, Gofuku 3190, Toyama 9308555, Japan
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2023年 / 22卷 / 02期
关键词
three-component FitzHugh-Nagumo system; standing spot solution; stability analysis; analytical singular perturbation theory; matched asymptotic expansion; FRONT DYNAMICS; DIFFUSION; BIFURCATIONS;
D O I
10.1137/21M144027X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This manuscript presents a mathematically rigorous proof for the location of eigenvalues of a linearized eigenvalue problem regarding standing spot solutions in a three-component FitzHugh-Nagumo system in R2 using an analytical singular perturbation technique. This result was already provided by [P. van Heijster and B. Sandstede, Phys. D, 275 (2014), pp. 19--34] by formal asymptotic analysis, in which they showed that stable traveling spot solutions bifurcate from stable standing ones via a drift bifurcation by combining analytical and numerical methods. Moreover, our result simultaneously provides approximations of eigenfunctions corresponding to the eigenvalues.
引用
收藏
页码:951 / 995
页数:45
相关论文
共 6 条
  • [1] Traveling Pulse Solutions in a Three-Component FitzHugh-Nagumo Model
    Teramoto, Takashi
    van Heijster, Peter
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (01): : 371 - 402
  • [2] Planar Radial Spots in a Three-Component FitzHugh-Nagumo System
    van Heijster, Peter
    Sandstede, Bjoern
    JOURNAL OF NONLINEAR SCIENCE, 2011, 21 (05) : 705 - 745
  • [3] Bifurcations to travelling planar spots in a three-component FitzHugh-Nagumo system
    van Heijster, Peter
    Sandstede, Bjoern
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 275 : 19 - 34
  • [4] Localized Patterns in a Three-Component FitzHugh-Nagumo Model Revisited Via an Action Functional
    van Heijster, Peter
    Chen, Chao-Nien
    Nishiura, Yasumasa
    Teramoto, Takashi
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (02) : 521 - 555
  • [5] Existence and Asymptotic Behaviors of Traveling Wave Solutions for the FitzHugh-Nagumo System
    Lin, Xiaojie
    Li, Chen
    Du, Zengji
    Wang, Ke
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [6] Planar Radial Spots in a Three-Component FitzHugh–Nagumo System
    Peter van Heijster
    Björn Sandstede
    Journal of Nonlinear Science, 2011, 21 : 705 - 745